期刊文献+
共找到45,297篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进GraphSAGE的网络攻击检测
1
作者 闫彦彤 于文涛 +1 位作者 李丽红 方伟 《郑州大学学报(理学版)》 北大核心 2026年第1期27-34,共8页
基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其... 基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其次,对GraphSAGE算法进行了改进,包括在消息传递阶段融合节点和边的特征,同时在消息聚合过程中考虑不同源节点对目标节点的影响程度,并在边嵌入生成时引入残差学习机制。在两个公开网络攻击数据集上的实验结果表明,在二分类情况下,所提算法的总体性能优于E-GraphSAGE、LSTM、RNN、CNN算法;在多分类情况下,所提算法在大多数攻击类型上的F1值高于对比算法。 展开更多
关键词 网络攻击检测 深度学习 图神经网络 图采样与聚合 注意力机制
在线阅读 下载PDF
A_(α)-Spectral Conditions for(a,b,k)-Factor-Critical Graphs and Fractional ID-[a,b]-Factor-Critical Covered Graphs
2
作者 Yonglei CHEN Fei WEN 《Journal of Mathematical Research with Applications》 2026年第1期1-12,共12页
In this paper,we first give a sufficient condition for a graph being fractional ID-[a,b]-factor-critical covered in terms of its independence number and minimum degree,which partially answers the problem posed by Sizh... In this paper,we first give a sufficient condition for a graph being fractional ID-[a,b]-factor-critical covered in terms of its independence number and minimum degree,which partially answers the problem posed by Sizhong Zhou,Hongxia Liu and Yang Xu(2022).Then,an A_(α)-spectral condition is given to ensure that G is a fractional ID-[a,b]-factor-critical covered graph and an(a,b,k)-factor-critical graph,respectively.In fact,(a,b,k)-factor-critical graph is a graph which has an[a,b]-factor for k=0.Thus,these above results extend the results of Jia Wei and Shenggui Zhang(2023)and Ao Fan,Ruifang Liu and Guoyan Ao(2023)in some sense. 展开更多
关键词 A_(α)-spectral radius (a b k)-factor fractional(g f)-factor ID-factor-critical graph independence number
原文传递
基于GraphRAG的大数据知识学习系统
3
作者 王晓燕 黄岚 王岩 《吉林大学学报(理学版)》 北大核心 2025年第6期1629-1636,共8页
针对大数据教学资源爆炸导致的信息过载与传统检索增强生成(RAG)在多源信息融合时准确性不足的问题,提出一种基于GraphRAG的大数据知识学习方法.首先,设计中文提示模板,驱动GraphRAG自动抽取课程实体和关系,构建初始知识图谱并持久化至N... 针对大数据教学资源爆炸导致的信息过载与传统检索增强生成(RAG)在多源信息融合时准确性不足的问题,提出一种基于GraphRAG的大数据知识学习方法.首先,设计中文提示模板,驱动GraphRAG自动抽取课程实体和关系,构建初始知识图谱并持久化至Neo4j图数据库;其次,通过实体对齐和关系补全,将人工整理的知识点与自动构建的图谱相融合,形成统一、可演化的知识图谱库;最后,利用GraphRAG预生成的社区摘要实现全局语义搜索,同时依托Neo4j图数据库完成面向知识点的局部精准检索.实验结果表明,该方法在问答准确率、响应相关性和多源信息整合流畅度上均显著优于传统RAG. 展开更多
关键词 大语言模型 检索增强生成 图检索增强生成 知识图谱
在线阅读 下载PDF
Graph Transformer技术与研究进展:从基础理论到前沿应用 被引量:2
4
作者 游浩 丁苍峰 +2 位作者 马乐荣 延照耀 曹璐 《计算机应用研究》 北大核心 2025年第4期975-986,共12页
图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系... 图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系和精确编码图的拓扑结构,Graph Transformer在节点分类、链接预测和图生成等任务中展现出卓越的性能和准确性。通过引入自注意力机制,Graph Transformer能够有效捕捉节点和边的局部及全局信息,显著提升模型效率和性能。深入探讨Graph Transformer模型,涵盖其发展背景、基本原理和详细结构,并从注意力机制、模块架构和复杂图处理能力(包括超图、动态图)三个角度进行细分分析。全面介绍Graph Transformer的应用现状和未来发展趋势,并探讨其存在的问题和挑战,提出可能的改进方法和思路,以推动该领域的研究和应用进一步发展。 展开更多
关键词 图神经网络 graph Transformer 图表示学习 节点分类
在线阅读 下载PDF
基于GraphRAG的中国马铃薯新品种知识图谱构建 被引量:2
5
作者 韦一金 任有强 +3 位作者 赵慧 樊景超 方沩 闫燊 《植物遗传资源学报》 北大核心 2025年第6期1229-1241,共13页
马铃薯是世界第四大主粮作物,拥有较高的产量潜力,为应对未来的粮食安全挑战,需要选育具有稳定抗病性的早熟高产马铃薯品种。为助力马铃薯新品种选育,明确目前中国马铃薯选育品种现状,以中国知网(CNKI)数据库中227篇马铃薯选育文献为研... 马铃薯是世界第四大主粮作物,拥有较高的产量潜力,为应对未来的粮食安全挑战,需要选育具有稳定抗病性的早熟高产马铃薯品种。为助力马铃薯新品种选育,明确目前中国马铃薯选育品种现状,以中国知网(CNKI)数据库中227篇马铃薯选育文献为研究对象,利用GraphRAG和Qwen2-70B-instruct构建知识图谱并使用Gephi实现可视化。基于所构建的知识图谱,分析近几年中国选育的马铃薯新品种的系谱、抗性和生育期,结果表明2004-2024年马铃薯新品种选育使用较多的亲本为冀张薯8号、斯凡特、费乌瑞它和早大白等,马铃薯选育品种大多对晚疫病有抗性,且生育期大多为中晚熟、晚熟。本研究探索了使用大语言模型快速构建马铃薯新品种选育研究知识图谱的实现路径,并对227个马铃薯选育品种进行分析,为马铃薯种质资源未来的发掘利用提供参考。 展开更多
关键词 知识图谱 马铃薯种质资源 大语言模型 农业
原文传递
基于CNN-GraphSAGE双分支特征融合的齿轮箱故障诊断方法 被引量:1
6
作者 韩延 吴迪 +1 位作者 黄庆卿 张焱 《电子测量与仪器学报》 北大核心 2025年第3期115-124,共10页
针对卷积神经网络(CNN)在振动数据结构信息上挖掘不足导致故障诊断精度不高的问题,提出一种基于卷积神经网络与图采样和聚合网络(CNN-GraphSAGE)双分支特征融合的齿轮箱故障诊断方法。首先,对齿轮箱振动数据进行小波包分解,利用分解后... 针对卷积神经网络(CNN)在振动数据结构信息上挖掘不足导致故障诊断精度不高的问题,提出一种基于卷积神经网络与图采样和聚合网络(CNN-GraphSAGE)双分支特征融合的齿轮箱故障诊断方法。首先,对齿轮箱振动数据进行小波包分解,利用分解后的小波包特征系数构建包含节点和边的图结构数据;然后,建立CNN-GraphSAGE双分支特征提取网络,在CNN分支中采用空洞卷积网络提取数据的全局特征,在GraphSAGE网络分支中通过多层特征融合策略来挖掘数据结构中隐含的关联信息;最后,基于SKNet注意力机制融合提取的双分支特征,并输入全连接层中实现对齿轮箱的故障诊断。为验证研究方法在齿轮箱故障诊断上的优良性能,首先对所提方法进行消融实验,然后在无添加噪声和添加1 dB噪声的条件下进行对比实验。实验结果表明,即使在1 dB噪声的条件下,研究方法的平均诊断精度为92.07%,均高于其他对比模型,证明了研究方法能够有效地识别齿轮箱的各类故障。 展开更多
关键词 图卷积神经网络 卷积神经网络 故障诊断 注意力机制
原文传递
一种基于GraphRAG的航天器故障辅助定位方法
7
作者 艾绍洁 何宇 +2 位作者 张伟 肖雪迪 张凌浩 《航天器工程》 北大核心 2025年第4期84-90,共7页
随着大语言模型等人工智能技术的突破性发展,以简洁、高效的方式基于现有知识构建垂直领域专家系统已成为可能。文章提出了一种基于图检索增强生成的航天器故障辅助定位方法,旨在依托归零知识本体建模,驱动大模型精确、快速地辅助定位... 随着大语言模型等人工智能技术的突破性发展,以简洁、高效的方式基于现有知识构建垂直领域专家系统已成为可能。文章提出了一种基于图检索增强生成的航天器故障辅助定位方法,旨在依托归零知识本体建模,驱动大模型精确、快速地辅助定位故障。首先,通过半自动知识清洗和大模型提取,自主构建归零知识图谱;然后,利用社区发现和基于图的多跳检索增强大模型集成智能体;最后,开发故障辅助定位系统,通过交互式推理辅助专家精准定位故障。工程实例验证表明,所提方法大幅降低了知识固化成本、显著提升了故障定位性能,验证了其可行性和优越性。 展开更多
关键词 航天器故障定位 知识图谱 基于图的检索增强生成 专家系统
在线阅读 下载PDF
基于大模型与GraphRAG的胶东金矿智能搜索技术
8
作者 李博文 王永志 +4 位作者 丁正江 王斌 温世博 董宇浩 纪政 《地学前缘》 北大核心 2025年第4期155-164,共10页
胶东金矿是我国东部重要的金矿资源集中区,其地质信息复杂、知识体系庞大,传统的信息检索方式难以满足矿产勘查中对语义理解与知识推理的高阶需求。为提升地质知识服务效率,本文基于GraphRAG(知识图谱增强型检索生成)技术,构建了面向胶... 胶东金矿是我国东部重要的金矿资源集中区,其地质信息复杂、知识体系庞大,传统的信息检索方式难以满足矿产勘查中对语义理解与知识推理的高阶需求。为提升地质知识服务效率,本文基于GraphRAG(知识图谱增强型检索生成)技术,构建了面向胶东金矿领域的智能搜索问答系统。研究以知网上胶东金矿相关的论文为语料来源,利用OCR与大语言模型(LLM)技术进行文本解析与语义标准化处理,形成覆盖矿化类型、控矿构造、矿物组合等核心概念的本体知识体系。系统通过提示工程驱动的大模型实现实体与关系自动抽取,构建结构化知识图谱,并集成于图数据库Neo4j中。进一步融合语义嵌入与社区聚类算法,构建知识索引网络,支持自然语言问答、语义扩展与知识溯源等功能。评估结果表明:该系统在回答准确性、上下文精度与知识可解释性等方面优于传统RAG方法及ChatGPT-4o等通用模型,具备更高的专业适应性和推理能力。研究结果可为金矿领域的智能化信息服务提供新型技术路径,也为图谱增强语言模型在地学知识管理中的应用探索提供理论支持。 展开更多
关键词 graphRAG 知识图谱 大语言模型 胶东金矿 知识问答
在线阅读 下载PDF
CondGraph:一个条件知识图谱的存储和查询系统
9
作者 马杰生 王理庚 +2 位作者 杨晓春 李发明 王斌 《中文信息学报》 北大核心 2025年第6期35-45,共11页
知识图谱(KG)在人工智能应用中发挥着重要作用。然而现有工作忽略了事实中的条件信息,限制了传统KG的表达能力。因此,条件知识图谱(CKG)被提出,CKG可以有效地表示条件信息,进一步加强知识图谱的表达能力。但现有CKG工作只侧重于从文本... 知识图谱(KG)在人工智能应用中发挥着重要作用。然而现有工作忽略了事实中的条件信息,限制了传统KG的表达能力。因此,条件知识图谱(CKG)被提出,CKG可以有效地表示条件信息,进一步加强知识图谱的表达能力。但现有CKG工作只侧重于从文本中提取条件知识,而较少关注对提取出的条件知识的管理。为有效管理CKG,该文提出CondGraph,一个可以支持从存储到查询整个CKG管理过程的系统。CondGraph可以将任何形式的用于表示条件知识图谱的嵌套三元组转换为规范形式,并将其存储在分层树状数据结构中。此外,该文提出了CKG上带有条件约束的查询定义并设计和实现了查询算法,以支持高效的CKG查询。实验结果表明,与现有的图数据库相比,CondGraph将CKG查询的性能平均提高了1~3个数量级。 展开更多
关键词 条件知识图谱 图数据库 知识图谱查询
在线阅读 下载PDF
基于RPA和Graph RAG的财务共享辅助系统设计与应用 被引量:2
10
作者 张赣江 林铭 +1 位作者 赖占添 刘晔 《铁路计算机应用》 2025年第4期73-76,共4页
为解决财务人员数字技术应用能力不足、传统财务流程中数据采集质量差导致重复返工、人工数据处理效率低等问题,设计开发了财务共享辅助系统。采用机器人流程自动化(RPA,Robotic Process Automation)和图检索增强生成(Graph RAG,Graph-b... 为解决财务人员数字技术应用能力不足、传统财务流程中数据采集质量差导致重复返工、人工数据处理效率低等问题,设计开发了财务共享辅助系统。采用机器人流程自动化(RPA,Robotic Process Automation)和图检索增强生成(Graph RAG,Graph-based Retrieval-Augmented Generation)技术,实现数据填报收集、RPA自动化处理、智能问答等功能,显著提升财务报账效率,为铁路局集团公司财务共享中心的建设提供支撑。 展开更多
关键词 机器人流程自动化 图检索增强生成(graph RAG) 财务共享 智能问答 大模型
在线阅读 下载PDF
基于GraphSAGE-MGAT的工控系统入侵检测方法
11
作者 胡育鸣 王华忠 《华东理工大学学报(自然科学版)》 北大核心 2025年第2期270-276,共7页
提出一种融合了图随机采样与聚合(GraphSAGE)和改进的图注意力网络(GAT)的工控入侵检测图神经网络算法,以处理工控入侵检测中存在的数据特征种类多和数量大等复杂特性。首先将入侵检测流量数据构建为图结构形式,利用GraphSAGE采样和聚... 提出一种融合了图随机采样与聚合(GraphSAGE)和改进的图注意力网络(GAT)的工控入侵检测图神经网络算法,以处理工控入侵检测中存在的数据特征种类多和数量大等复杂特性。首先将入侵检测流量数据构建为图结构形式,利用GraphSAGE采样和聚合邻居节点信息得到节点的embedding向量,降低图结构空间复杂度,提高对大量数据处理的效率。运用改进的多头图注意力机制,丰富捕获的特征信息,计算节点之间的相关性和重要性,为各个节点分配相应权重,提高分类精准度。将该方法在工控数据集上验证,实验结果表明,该方法具有更好的时间效率以及更高的检测精度。 展开更多
关键词 工控系统 入侵检测 图随机采样与聚合 图注意力网络 图结构
在线阅读 下载PDF
基于CNN-GraphSAGE的风口图像多尺度提取与识别模型 被引量:2
12
作者 李福民 王靖 +3 位作者 刘小杰 段一凡 张旭升 吕庆 《钢铁》 北大核心 2025年第1期40-50,共11页
高炉风口的各项状态指标对指导高炉顺行具有重要意义。长期以来,风口状态监测依赖人工观察和经验判断,存在着风口异常监测响应不及时和诊断不准确等问题。为了应对这一现状,在国内某钢铁厂2023年11-12月高炉风口图像的基础上,提出了基于... 高炉风口的各项状态指标对指导高炉顺行具有重要意义。长期以来,风口状态监测依赖人工观察和经验判断,存在着风口异常监测响应不及时和诊断不准确等问题。为了应对这一现状,在国内某钢铁厂2023年11-12月高炉风口图像的基础上,提出了基于CNN-GraphSAGE的风口图像多尺度提取与识别的方法,将风口图像进行一系列预处理后,采用卷积神经网络并行提取图像的多尺度特征信息,结合通道注意力机制动态调整不同特征通道权重,得到精细化的特征融合图。随后,采用改进的图神经网络GraphSAGE算法对特征融合图进行处理。经过多轮测试并与广泛应用的算法进行对比后,开发了基于CNN-GraphSAGE模型的高炉风口异常监测系统,可以监测挂渣、涌渣、断煤和漏水4类异常情况。相较于传统算法系统,该系统大幅度提高了风口异常监测响应速度,异常诊断准确率达93.40%,弥补了现有高炉风口监测方法的不足,极大降低了钢铁企业对风口异常诊断分析的成本,加强了对高炉炼铁过程的把控,确保其生产环节更加安全可靠。 展开更多
关键词 高炉 风口 卷积神经网络 多尺度特征提取 通道注意力 图神经网络 炼铁 钢铁
原文传递
基于yEd Graph Editor的矿井通风网络图自动绘制方法研究 被引量:2
13
作者 王少丰 魏宗康 《能源技术与管理》 2025年第1期155-158,共4页
针对矿井通风系统网络图绘制过程中存在的绘制难度大、工作量繁重、易出错等突出问题,提出了一种基于yEd Graph Editor(yEd)软件的自动化绘制方法。详细分析了基于yEd的自动绘制原理、步骤及优势,并通过实例展示了矿井通风网络图的绘制... 针对矿井通风系统网络图绘制过程中存在的绘制难度大、工作量繁重、易出错等突出问题,提出了一种基于yEd Graph Editor(yEd)软件的自动化绘制方法。详细分析了基于yEd的自动绘制原理、步骤及优势,并通过实例展示了矿井通风网络图的绘制效果。同时,还分析了yEd在绘制矿井通风系统网络图时的局限性,并提出了相应的优化建议。研究结果表明,使用yEd可以显著提高绘制的速度、准确性和可靠性,从而为矿井通风系统的设计和安全管理提供了有力的技术支持。 展开更多
关键词 矿井通风 网络图绘制 自动化 yEd graph Editor
在线阅读 下载PDF
基于Graph Transformer的无人机全覆盖路径规划方法
14
作者 陈旭 王从庆 +1 位作者 曾强 李战 《计算机测量与控制》 2025年第12期224-229,277,共7页
为了实现无人机对三维结构的损伤检测,同时避免无人机与三维结构之间的碰撞,保证检测过程的准确、高效,针对无人机全覆盖路径规划问题,提出了一种基于Graph Transformer的无人机全覆盖路径规划方法:将其视为旅行商问题的变体,在全连接... 为了实现无人机对三维结构的损伤检测,同时避免无人机与三维结构之间的碰撞,保证检测过程的准确、高效,针对无人机全覆盖路径规划问题,提出了一种基于Graph Transformer的无人机全覆盖路径规划方法:将其视为旅行商问题的变体,在全连接图上用图神经网络进行求解;在图神经网络中引入了注意力模块,缓解了图神经网络中稀疏消息传递的局限性;结合图卷积和注意力机制对节点和边进行特征提取;在解码器中评估每条边在解中存在的概率,生成概率热力图;通过波束搜索获得初步解,并使用局部搜索进行优化;实验结果表明,与基于强化学习、搜索的深度学习方法以及改进的蚁群方法和遗传算法相比,该方法在性能表现、泛化性等方面具有显著优势;并适用于二维和三维空间中的欧氏距离及非欧氏距离情况,在无人机导航和全覆盖路径规划方面具有很好的应用价值。 展开更多
关键词 graph Transformer 全覆盖路径规划 图神经网络 旅行商问题 注意力机制
在线阅读 下载PDF
Construction of a Maritime Knowledge Graph Using GraphRAG for Entity and Relationship Extraction from Maritime Documents 被引量:1
15
作者 Yi Han Tao Yang +2 位作者 Meng Yuan Pinghua Hu Chen Li 《Journal of Computer and Communications》 2025年第2期68-93,共26页
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi... In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making. 展开更多
关键词 Maritime Knowledge graph graphRAG Entity and Relationship Extraction Document Management
在线阅读 下载PDF
耦合Graphab-PLUS模型的生态网络动态评估框架——以北京市中心城区为例
16
作者 李豪 吴明豪 +3 位作者 詹芳芷 李虹烨 张翔 刘志成 《北京林业大学学报》 北大核心 2025年第1期95-105,共11页
【目的】探索适应城市动态发展和政策引导下的城市生态网络评估框架,为生态网络的精准化建设提供发展导向和前瞻布局。【方法】以北京市中心城区为研究对象,基于2005年和2020年两期土地利用数据,使用PLUS模型对3种城市发展情景下2035年... 【目的】探索适应城市动态发展和政策引导下的城市生态网络评估框架,为生态网络的精准化建设提供发展导向和前瞻布局。【方法】以北京市中心城区为研究对象,基于2005年和2020年两期土地利用数据,使用PLUS模型对3种城市发展情景下2035年的土地利用进行模拟,借助Graphab计算不同情景下生态网络的景观连通性指标,构建生态网络动态评估框架,厘清问题并探讨中心城区的生态建设方向。【结果】(1)在总体规划发展情景下,建设用地的扩张强度得到控制,呈现出分散式发展的趋势,整体绿色空间发展状态向好;城市扩张发展情景下建设用地向周边用地强烈扩张。(2)2005—2020年间,中心城区的连通概率指数(PC)下降了29.1%,城市生态网络有所退化。总体规划发展情景的生态网络状态改善显著,PC涨幅为62.6%;而城市扩张情景加重了生态退化的趋势,PC降幅为38.6%。(3)在个体水平上,连通概率变化指数等级分布呈现西北高,东南低的格局。总体规划发展情景下,整体网络结构趋于完整,较高等级要素数量增加;城市扩张发展情景下整体网络结构愈发支离破碎,要素等级退化显著。(4)动态评估框架上,中心城区倾向低基底特征,各区网络特征差异显著。【结论】研究通过耦合Graphab-PLUS模型,探索了城市生态网络的评估方法,构建了“基底–韧性–潜力”的三维度动态评估框架,为明确区域生态发展导向和支撑国土空间规划提供科学依据。提出了中心城区生态网络的优化建议:整体上补足区域生态短板,加强东南片区生态建设;在分区优化方面,优先提升海淀区生态网络的整体功能,着重保护石景山区的生态资源,并注重东西城区网络要素的系统性建设。 展开更多
关键词 生态网络 景观图论 情景模拟 景观连通性 北京市中心城区
在线阅读 下载PDF
Quantifying compatibility mechanisms in traditional Chinese medicine with interpretable graph neural networks 被引量:1
17
作者 Jingqi Zeng Xiaobin Jia 《Journal of Pharmaceutical Analysis》 2025年第8期1887-1901,共15页
Traditional Chinese medicine(TCM)features complex compatibility mechanisms involving multicomponent,multi-target,and multi-pathway interactions.This study presents an interpretable graph artificial intelligence(GraphA... Traditional Chinese medicine(TCM)features complex compatibility mechanisms involving multicomponent,multi-target,and multi-pathway interactions.This study presents an interpretable graph artificial intelligence(GraphAI)framework to quantify such mechanisms in Chinese herbal formulas(CHFs).A multidimensional TCM knowledge graph(TCM-MKG;https://zenodo.org/records/13763953)was constructed,integrating seven standardized modules:TCM terminology,Chinese patent medicines(CPMs),Chinese herbal pieces(CHPs),pharmacognostic origins(POs),chemical compounds,biological targets,and diseases.A neighbor-diffusion strategy was used to address the sparsity of compound-target associations,increasing target coverage from 12.0%to 98.7%.Graph neural networks(GNNs)with attention mechanisms were applied to 6,080 CHFs,modeled as graphs with CHPs as nodes.To embed domain-specific semantics,virtual nodes medicinal properties,i.e.,therapeutic nature,flavor,and meridian tropism,were introduced,enabling interpretable modeling of inter-CHP relationships.The model quantitatively captured classical compatibility roles such as“monarch-minister-assistant-guide”,and uncovered TCM etiological types derived from diagnostic and efficacy patterns.Model validation using 215 CHFs used for coronavirus disease 2019(COVID-19)management highlighted Radix Astragali-Rhizoma Phragmitis as a high-attention herb pair.Mass spectrometry(MS)and target prediction identified three active compounds,i.e.,methylinissolin-3-O-glucoside,corydalin,and pingbeinine,which converge on pathways such as neuroactive ligand-receptor interaction,xenobiotic response,and neuronal function,supporting their neuroimmune and detoxification potential.Given their high safety and dietary compatibility,this herb pair may offer therapeutic value for managing long COVID-19.All data and code are openly available(https://github.com/ZENGJingqi/GraphAI-for-TCM),providing a scalable and interpretable platform for TCM mechanism research and discovery of bioactive herbal constituents. 展开更多
关键词 Traditional Chinese medicine graph neural networks Knowledge graph Compatibility mechanism Artificial intelligence Coronavirus disease 2019
暂未订购
Methodology,progress and challenges of geoscience knowledge graph in International Big Science Program of Deep-Time Digital Earth 被引量:2
18
作者 ZHU Yunqiang WANG Qiang +9 位作者 WANG Shu SUN Kai WANG Xinbing LV Hairong HU Xiumian ZHANG Jie WANG Bin QIU Qinjun YANG Jie ZHOU Chenghu 《Journal of Geographical Sciences》 2025年第5期1132-1156,共25页
Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate... Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate prediction,natural resource exploration,and sustainable planetary stewardship.To advance Deep-time Earth research in the era of big data and artificial intelligence,the International Union of Geological Sciences initiated the“Deeptime Digital Earth International Big Science Program”(DDE)in 2019.At the core of this ambitious program lies the development of geoscience knowledge graphs,serving as a transformative knowledge infrastructure that enables the integration,sharing,mining,and analysis of heterogeneous geoscience big data.The DDE knowledge graph initiative has made significant strides in three critical dimensions:(1)establishing a unified knowledge structure across geoscience disciplines that ensures consistent representation of geological entities and their interrelationships through standardized ontologies and semantic frameworks;(2)developing a robust and scalable software infrastructure capable of supporting both expert-driven and machine-assisted knowledge engineering for large-scale graph construction and management;(3)implementing a comprehensive three-tiered architecture encompassing basic,discipline-specific,and application-oriented knowledge graphs,spanning approximately 20 geoscience disciplines.Through its open knowledge framework and international collaborative network,this initiative has fostered multinational research collaborations,establishing a robust foundation for next-generation geoscience research while propelling the discipline toward FAIR(Findable,Accessible,Interoperable,Reusable)data practices in deep-time Earth systems research. 展开更多
关键词 deep-time Earth geoscience knowledge graph Deep-time Digital Earth International Big Science Program
原文传递
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
19
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Graph-based multi-agent reinforcement learning for collaborative search and tracking of multiple UAVs 被引量:2
20
作者 Bocheng ZHAO Mingying HUO +4 位作者 Zheng LI Wenyu FENG Ze YU Naiming QI Shaohai WANG 《Chinese Journal of Aeronautics》 2025年第3期109-123,共15页
This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj... This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments. 展开更多
关键词 Unmanned aerial vehicle(UAV) Multi-agent reinforcement learning(MARL) graph attention network(GAT) Tracking Dynamic and unknown environment
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部