期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Vulnerability2Vec:A Graph-Embedding Approach for Enhancing Vulnerability Classification
1
作者 Myoung-oh Choi Mincheol Shin +2 位作者 Hyonjun Kang Ka Lok Man Mucheol Kim 《Computer Modeling in Engineering & Sciences》 2025年第9期3191-3212,共22页
The escalating complexity and heterogeneity of modern energy systems—particularly in smart grid and distributed energy infrastructures—has intensified the need for intelligent and scalable security vulnerability cla... The escalating complexity and heterogeneity of modern energy systems—particularly in smart grid and distributed energy infrastructures—has intensified the need for intelligent and scalable security vulnerability classification.To address this challenge,we propose Vulnerability2Vec,a graph-embedding-based framework designed to enhance the automated classification of security vulnerabilities that threaten energy system resilience.Vulnerability2Vec converts Common Vulnerabilities and Exposures(CVE)text explanations to semantic graphs,where nodes represent CVE IDs and key terms(nouns,verbs,and adjectives),and edges capture co-occurrence relationships.Then,it embeds the semantic graphs to a low-dimensional vector space with random-walk sampling and skip-gram with negative sampling.It is possible to identify the latent relationships and structural patterns that traditional sparse vector methods fail to capture.Experimental results demonstrate a classification accuracy of up to 80%,significantly outperforming baseline methods.This approach offers a theoretical basis for classifying vulnerability types as structured semantic patterns in complex software systems.The proposed method models the semantic structure of vulnerabilities,providing a theoretical foundation for their classification. 展开更多
关键词 Security vulnerability graph representation graph-embedding deep learning node classification
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部