期刊文献+
共找到149篇文章
< 1 2 8 >
每页显示 20 50 100
Model Change Active Learning in Graph-Based Semi-supervised Learning
1
作者 Kevin S.Miller Andrea L.Bertozzi 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1270-1298,共29页
Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to bes... Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art. 展开更多
关键词 Active learning graph-based methods semi-supervised learning(SSL) Graph Laplacian
在线阅读 下载PDF
Enhanced battery life prediction with reduced data demand via semi-supervised representation learning 被引量:1
2
作者 Liang Ma Jinpeng Tian +2 位作者 Tieling Zhang Qinghua Guo Chi Yung Chung 《Journal of Energy Chemistry》 2025年第2期524-534,I0011,共12页
Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo... Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices. 展开更多
关键词 Lithium-ion batteries Battery degradation Remaining useful life semi-supervised learning
在线阅读 下载PDF
Graph-based semi-supervised learning 被引量:2
3
作者 Changshui ZHANG Fei WANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第1期17-26,共10页
The recent years have witnessed a surge of interests in graph-based semi-supervised learning(GBSSL).In this paper,we will introduce a series of works done by our group on this topic including:1)a method called linear ... The recent years have witnessed a surge of interests in graph-based semi-supervised learning(GBSSL).In this paper,we will introduce a series of works done by our group on this topic including:1)a method called linear neighborhood propagation(LNP)which can automatically construct the optimal graph;2)a novel multilevel scheme to make our algorithm scalable for large data sets;3)a generalized point charge scheme for GBSSL;4)a multilabel GBSSL method by solving a Sylvester equation;5)an information fusion framework for GBSSL;and 6)an application of GBSSL on fMRI image segmentation. 展开更多
关键词 graph-based semi-supervised learning(GBSSL) linear neighborhood propagation(LNP) point charge model fMRI image segmentation
原文传递
A Graph-Based Semi-Supervised Approach for Few-Shot Class-Incremental Modulation Classification
4
作者 Zhou Xiaoyu Qi Peihan +3 位作者 Liu Qi Ding Yuanlei Zheng Shilian Li Zan 《China Communications》 SCIE CSCD 2024年第11期88-103,共16页
With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recogni... With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods. 展开更多
关键词 deep learning few-shot label propagation modulation classification semi-supervised learning
在线阅读 下载PDF
Semi-supervised learning based hybrid beamforming under time-varying propagation environments
5
作者 Yin Long Hang Ding Simon Murphy 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1168-1177,共10页
Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi... Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi-supervised Incremental Learning(IL),we propose an online hybrid beamforming scheme.Firstly,given the constraint of constant modulus on analog beamformer and combiner,we propose a new broadnetwork-based structure for the design model of hybrid beamforming.Compared with the existing network structure,the proposed network structure can achieve better transmission performance and lower complexity.Moreover,to enhance the efficiency of IL further,by combining the semi-supervised graph with IL,we propose a hybrid beamforming scheme based on chunk-by-chunk semi-supervised learning,where only few transmissions are required to calculate the label and all other unlabelled transmissions would also be put into a training data chunk.Unlike the existing single-by-single approach where transmissions during the model update are not taken into the consideration of model update,all transmissions,even the ones during the model update,would make contributions to model update in the proposed method.During the model update,the amount of unlabelled transmissions is very large and they also carry some information,the prediction performance can be enhanced to some extent by these unlabelled channel data.Simulation results demonstrate the spectral efficiency of the proposed method outperforms that of the existing single-by-single approach.Besides,we prove the general complexity of the proposed method is lower than that of the existing approach and give the condition under which its absolute complexity outperforms that of the existing approach. 展开更多
关键词 Hybrid beamforming Time-varying environments Broad network semi-supervised learning Online learning
在线阅读 下载PDF
A Novel Graph Structure Learning Based Semi-Supervised Framework for Anomaly Identification in Fluctuating IoT Environment
6
作者 Weijian Song Xi Li +3 位作者 Peng Chen Juan Chen Jianhua Ren Yunni Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期3001-3016,共16页
With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasin... With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate. 展开更多
关键词 IoT multivariate time series anomaly detection graph learning semi-supervised mean teachers
在线阅读 下载PDF
Decentralized Semi-Supervised Learning for Stochastic Configuration Networks Based on the Mean Teacher Method
7
作者 Kaijing Li Wu Ai 《Journal of Computer and Communications》 2024年第4期247-261,共15页
The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy ... The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments. 展开更多
关键词 Stochastic Neural Network Consistency Regularization semi-supervised learning Decentralized learning
在线阅读 下载PDF
Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation
8
作者 Hengyang Liu Yang Yuan +2 位作者 Pengcheng Ren Chengyun Song Fen Luo 《Computers, Materials & Continua》 SCIE EI 2025年第1期543-560,共18页
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t... Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset. 展开更多
关键词 semi-supervised medical image segmentation contrastive learning stochastic augmented
在线阅读 下载PDF
Diverse Models,United Goal:A Comprehensive Survey of Ensemble Learning
9
作者 Ziwei Fan Zhiwen Yu +5 位作者 Kaixiang Yang Wuxing Chen Xiaoqing Liu Guojie Li Xianling Yang C.L.Philip Chen 《CAAI Transactions on Intelligence Technology》 2025年第4期959-982,共24页
Ensemble learning,a pivotal branch of machine learning,amalgamates multiple base models to enhance the overarching performance of predictive models,capitalising on the diversity and collective wisdom of the ensemble t... Ensemble learning,a pivotal branch of machine learning,amalgamates multiple base models to enhance the overarching performance of predictive models,capitalising on the diversity and collective wisdom of the ensemble to surpass individual models and mitigate overfitting.In this review,a four-layer research framework is established for the research of ensemble learning,which can offer a comprehensive and structured review of ensemble learning from bottom to top.Firstly,this survey commences by introducing fundamental ensemble learning techniques,including bagging,boosting,and stacking,while also exploring the ensemble's diversity.Then,deep ensemble learning and semi-supervised ensemble learning are studied in detail.Furthermore,the utilisation of ensemble learning techniques to navigate challenging datasets,such as imbalanced and highdimensional data,is discussed.The application of ensemble learning techniques across various research domains,including healthcare,transportation,finance,manufacturing,and the Internet,is also examined.The survey concludes by discussing challenges intrinsic to ensemble learning. 展开更多
关键词 BAGGING BOOSTING deep learning ensemble learning imbalanced data semi-supervised learning STACKING
在线阅读 下载PDF
Expert System Based on Ontology and Interpretable Machine Learning to Assist in the Discovery of Railway Accident Scenarios
10
作者 Habib Hadj-Mabrouk 《Computers, Materials & Continua》 2025年第9期4399-4430,共32页
A literature review on AI applications in the field of railway safety shows that the implemented approaches mainly concern the operational,maintenance,and feedback phases following railway incidents or accidents.These... A literature review on AI applications in the field of railway safety shows that the implemented approaches mainly concern the operational,maintenance,and feedback phases following railway incidents or accidents.These approaches exploit railway safety data once the transport system has received authorization for commissioning.However,railway standards and regulations require the development of a safety management system(SMS)from the specification and design phases of the railway system.This article proposes a new AI approach for analyzing and assessing safety from the specification and design phases of the railway system with a view to improving the development of the SMS.Unlike some learning methods,the proposed approach,which is dedicated in particular to safety assessment bodies,is based on semi-supervised learning carried out in close collaboration with safety experts who contributed to the development of a database of potential accident scenarios(learning example database)relating to the risk of rail collision.The proposed decision support is based on the use of an expert system whose knowledge base is automatically generated by inductive learning in the form of an association rule(rule base)and whose main objective is to suggest to the safety expert possible hazards not considered during the development of the SMS to complete the initial hazard register. 展开更多
关键词 Artificial intelligence ONTOLOGY semi-supervised learning expert system association rules railways safety HAZARD accident scenarios classification assessment
在线阅读 下载PDF
Semi-Supervised Medical Image Classification Based on Sample Intrinsic Similarity Using Canonical Correlation Analysis
11
作者 Kun Liu Chen Bao Sidong Liu 《Computers, Materials & Continua》 2025年第3期4451-4468,共18页
Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,l... Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,labeled data is very scarce due to patient privacy concerns.For researchers,obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding.In addition,skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions.In this paper,we propose a model called Coalition Sample Relation Consistency(CSRC),a consistency-based method that leverages Canonical Correlation Analysis(CCA)to capture the intrinsic relationships between samples.Considering that traditional consistency-based models only focus on the consistency of prediction,we additionally explore the similarity between features by using CCA.We enforce feature relation consistency based on traditional models,encouraging the model to learn more meaningful information from unlabeled data.Finally,considering that cross-entropy loss is not as suitable as the supervised loss when studying with imbalanced datasets(i.e.,ISIC 2017 and ISIC 2018),we improve the supervised loss to achieve better classification accuracy.Our study shows that this model performs better than many semi-supervised methods. 展开更多
关键词 semi-supervised learning skin lesion classification sample relation consistency class imbalanced
在线阅读 下载PDF
Multi-Consistency Training for Semi-Supervised Medical Image Segmentation
12
作者 WU Changxue ZHANG Wenxi +1 位作者 HAN Jiaozhi WANG Hongyu 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期800-814,共15页
Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adep... Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adept at leveraging a modest amount of labeled data.Nonetheless,most prevailing SSL segmentation methods for medical images either rely on the single consistency training method or directly fine-tune SSL methods designed for natural images.In this paper,we propose an innovative semi-supervised method called multi-consistency training(MCT)for medical image segmentation.Our approach transcends the constraints of prior methodologies by considering consistency from a dual perspective:output consistency across different up-sampling methods and output consistency of the same data within the same network under various perturbations to the intermediate features.We design distinct semi-supervised loss regression methods for these two types of consistencies.To enhance the application of our MCT model,we also develop a dedicated decoder as the core of our neural network.Thorough experiments were conducted on the polyp dataset and the dental dataset,rigorously compared against other SSL methods.Experimental results demonstrate the superiority of our approach,achieving higher segmentation accuracy.Moreover,comprehensive ablation studies and insightful discussion substantiate the efficacy of our approach in navigating the intricacies of medical image segmentation. 展开更多
关键词 semi-supervised learning(SSL) multi-consistency training(MCT) medical image segmentation intermediate feature perturbation
原文传递
Semi-supervised method for tunnel blasting quality prediction using measurement while drilling data
13
作者 Hengxiang Jin Qian Fang +3 位作者 Jun Wang Jiayao Chen Gan Wang Guoli Zheng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2633-2649,共17页
Predicting blasting quality during tunnel construction holds practical significance.In this study,a new semi-supervised learning method using convolutional variational autoencoder(CVAE)and deep neural network(DNN)is p... Predicting blasting quality during tunnel construction holds practical significance.In this study,a new semi-supervised learning method using convolutional variational autoencoder(CVAE)and deep neural network(DNN)is proposed for the prediction of blasting quality grades.Tunnel blasting quality can be measured by over/under excavation.The occurrence of over/under excavation is influenced by three factors:geological conditions,blasting parameters,and tunnel geometric dimensions.The proposed method reflects the geological conditions through measurements while drilling and utilizes blasting parameters,tunnel geometric dimensions,and tunnel depth as input variables to achieve tunnel blasting quality grades prediction.Furthermore,the model is optimized by considering the influence of surrounding rock mass features on the predicted positions.The results demonstrate that the proposed method outperforms other commonly used machine learning and deep learning algorithms in extracting over/under excavation feature information and achieving blasting quality prediction. 展开更多
关键词 Tunnel blasting quality Over/under excavation semi-supervised learning Measurement while drilling(MWD)
在线阅读 下载PDF
Semi-Supervised New Intention Discovery for Syntactic Elimination and Fusion in Elastic Neighborhoods
14
作者 Di Wu Liming Feng Xiaoyu Wang 《Computers, Materials & Continua》 2025年第4期977-999,共23页
Semi-supervised new intent discovery is a significant research focus in natural language understanding.To address the limitations of current semi-supervised training data and the underutilization of implicit informati... Semi-supervised new intent discovery is a significant research focus in natural language understanding.To address the limitations of current semi-supervised training data and the underutilization of implicit information,a Semi-supervised New Intent Discovery for Elastic Neighborhood Syntactic Elimination and Fusion model(SNID-ENSEF)is proposed.Syntactic elimination contrast learning leverages verb-dominant syntactic features,systematically replacing specific words to enhance data diversity.The radius of the positive sample neighborhood is elastically adjusted to eliminate invalid samples and improve training efficiency.A neighborhood sample fusion strategy,based on sample distribution patterns,dynamically adjusts neighborhood size and fuses sample vectors to reduce noise and improve implicit information utilization and discovery accuracy.Experimental results show that SNID-ENSEF achieves average improvements of 0.88%,1.27%,and 1.30%in Normalized Mutual Information(NMI),Accuracy(ACC),and Adjusted Rand Index(ARI),respectively,outperforming PTJN,DPN,MTP-CLNN,and DWG models on the Banking77,StackOverflow,and Clinc150 datasets.The code is available at https://github.com/qsdesz/SNID-ENSEF,accessed on 16 January 2025. 展开更多
关键词 Natural language understanding semi-supervised new intent discovery syntactic elimination contrast learning neighborhood sample fusion strategies bidirectional encoder representations from transformers(BERT)
在线阅读 下载PDF
Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning 被引量:17
15
作者 Xueyi LI Jialin LI +1 位作者 Yongzhi QU David HE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第2期418-426,共9页
In aerospace industry,gears are the most common parts of a mechanical transmission system.Gear pitting faults could cause the transmission system to crash and give rise to safety disaster.It is always a challenging pr... In aerospace industry,gears are the most common parts of a mechanical transmission system.Gear pitting faults could cause the transmission system to crash and give rise to safety disaster.It is always a challenging problem to diagnose the gear pitting condition directly through the raw signal of vibration.In this paper,a novel method named augmented deep sparse autoencoder(ADSAE)is proposed.The method can be used to diagnose the gear pitting fault with relatively few raw vibration signal data.This method is mainly based on the theory of pitting fault diagnosis and creatively combines with both data augmentation ideology and the deep sparse autoencoder algorithm for the fault diagnosis of gear wear.The effectiveness of the proposed method is validated by experiments of six types of gear pitting conditions.The results show that the ADSAE method can effectively increase the network generalization ability and robustness with very high accuracy.This method can effectively diagnose different gear pitting conditions and show the obvious trend according to the severity of gear wear faults.The results obtained by the ADSAE method proposed in this paper are compared with those obtained by other common deep learning methods.This paper provides an important insight into the field of gear fault diagnosis based on deep learning and has a potential practical application value. 展开更多
关键词 Deep learning GEAR PITTING diagnosis GEAR teeth RAW vibration signal semi-supervised learning SPARSE autoencoder
原文传递
Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification 被引量:42
16
作者 Ya Tu Yun Lin +1 位作者 Jin Wang Jeong-Uk Kim 《Computers, Materials & Continua》 SCIE EI 2018年第5期243-254,共12页
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp... Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier. 展开更多
关键词 Deep learning automated modulation classification semi-supervised learning generative adversarial networks
在线阅读 下载PDF
Fault diagnosis of electric transformers based on infrared image processing and semi-supervised learning 被引量:6
17
作者 Jian Fang Fan Yang +2 位作者 Rui Tong Qin Yu Xiaofeng Dai 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期596-607,共12页
It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and ac... It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method. 展开更多
关键词 TRANSFORMER Fault diagnosis Infrared image Generative adversarial network semi-supervised learning
在线阅读 下载PDF
Analyzing Cross-domain Transportation Big Data of New York City with Semi-supervised and Active Learning 被引量:4
18
作者 Huiyu Sun Suzanne McIntosh 《Computers, Materials & Continua》 SCIE EI 2018年第10期1-9,共9页
The majority of big data analytics applied to transportation datasets suffer from being too domain-specific,that is,they draw conclusions for a dataset based on analytics on the same dataset.This makes models trained ... The majority of big data analytics applied to transportation datasets suffer from being too domain-specific,that is,they draw conclusions for a dataset based on analytics on the same dataset.This makes models trained from one domain(e.g.taxi data)applies badly to a different domain(e.g.Uber data).To achieve accurate analyses on a new domain,substantial amounts of data must be available,which limits practical applications.To remedy this,we propose to use semi-supervised and active learning of big data to accomplish the domain adaptation task:Selectively choosing a small amount of datapoints from a new domain while achieving comparable performances to using all the datapoints.We choose the New York City(NYC)transportation data of taxi and Uber as our dataset,simulating different domains with 90%as the source data domain for training and the remaining 10%as the target data domain for evaluation.We propose semi-supervised and active learning strategies and apply it to the source domain for selecting datapoints.Experimental results show that our adaptation achieves a comparable performance of using all datapoints while using only a fraction of them,substantially reducing the amount of data required.Our approach has two major advantages:It can make accurate analytics and predictions when big datasets are not available,and even if big datasets are available,our approach chooses the most informative datapoints out of the dataset,making the process much more efficient without having to process huge amounts of data. 展开更多
关键词 Big data taxi and uber domain adaptation active learning semi-supervised learning
在线阅读 下载PDF
Incremental semi-supervised learning for intelligent seismic facies identification 被引量:3
19
作者 He Su-Mei Song Zhao-Hui +2 位作者 Zhang Meng-Ke Yuan San-Yi Wang Shang-Xu 《Applied Geophysics》 SCIE CSCD 2022年第1期41-52,144,共13页
Intelligent seismic facies identification based on deep learning can alleviate the time-consuming and labor-intensive problem of manual interpretation,which has been widely applied.Supervised learning can realize faci... Intelligent seismic facies identification based on deep learning can alleviate the time-consuming and labor-intensive problem of manual interpretation,which has been widely applied.Supervised learning can realize facies identification with high efficiency and accuracy;however,it depends on the usage of a large amount of well-labeled data.To solve this issue,we propose herein an incremental semi-supervised method for intelligent facies identification.Our method considers the continuity of the lateral variation of strata and uses cosine similarity to quantify the similarity of the seismic data feature domain.The maximum-diff erence sample in the neighborhood of the currently used training data is then found to reasonably expand the training sets.This process continuously increases the amount of training data and learns its distribution.We integrate old knowledge while absorbing new ones to realize incremental semi-supervised learning and achieve the purpose of evolving the network models.In this work,accuracy and confusion matrix are employed to jointly control the predicted results of the model from both overall and partial aspects.The obtained values are then applied to a three-dimensional(3D)real dataset and used to quantitatively evaluate the results.Using unlabeled data,our proposed method acquires more accurate and stable testing results compared to conventional supervised learning algorithms that only use well-labeled data.A considerable improvement for small-sample categories is also observed.Using less than 1%of the training data,the proposed method can achieve an average accuracy of over 95%on the 3D dataset.In contrast,the conventional supervised learning algorithm achieved only approximately 85%. 展开更多
关键词 seismic facies identification semi-supervised learning incremental learning cosine similarity
在线阅读 下载PDF
RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes 被引量:7
20
作者 DAI Wei HU Jin-cheng +2 位作者 CHENG Yu-hu WANG Xue-song CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3338-3350,共13页
Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin... Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application. 展开更多
关键词 semi-supervised learning(SSL) L2-fusion term online adaptation random vector functional link network(RVFLN)
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部