地磁同步定位与构图(simultaneously localization and mapping,SLAM)无须先验地磁指纹库,即可实现基于智能手机的未知室内环境定位。然而,智能手机地磁SLAM仍受限于惯性定位精度差、因子图优化算法动态适应能力不足及大型场景SLAM应用...地磁同步定位与构图(simultaneously localization and mapping,SLAM)无须先验地磁指纹库,即可实现基于智能手机的未知室内环境定位。然而,智能手机地磁SLAM仍受限于惯性定位精度差、因子图优化算法动态适应能力不足及大型场景SLAM应用系统性能恶化等技术瓶颈。为解决此问题,本文通过设计方差时序递增机制和多源关键数据帧,提出一种面向大型室内场景的地磁SLAM增强优化算法。首先,为了提高惯性定位精度,本文挖掘行人运动过程中呈现出的特征规律构建观测方程,并融合地磁环境信息实现手机端地磁SLAM。然后,针对因子图优化算法动态适应能力不足,采用前端卡尔曼滤波与后端因子图优化相结合的定位框架提升时效性,同时设计方差时序递增机制,动态融合不同定位方法。最后,为了缓解大型场景地磁SLAM性能恶化,在时序维度上扩展关键帧概念和特征表达能力,有效缓解大型场景地磁误匹配问题;结合多源数据设计稳健回环探测与匹配算法,构建关键帧评分机制降低空间密度,从而提高算法效率。试验结果表明,本文实现了大型室内场景闭环情形下的地磁SLAM,相比惯性定位和经典地磁SLAM,本文提出的地磁SLAM增强优化方法的位置均方根误差降低了18%~67%;并且在仅利用标准方法22.6%的关键帧数量的前提下,本文方法仍能保持更高精度、更平滑的定位结果;通过试验探究了参数设置对定位精度和运行时间的影响,明确了地磁图构建首要因素基函数体素网格边长。展开更多
针对基于图优化的激光SLAM算法在高相似度的场景中闭环检测出错的问题,提出使用双目相机进行闭环检测的方法.使用加入旋转不变性的FAST特征点和BRIEF描述子进行双目深度估计;引入局部地图的概念,使用单帧激光雷达数据与局部地图进行匹配...针对基于图优化的激光SLAM算法在高相似度的场景中闭环检测出错的问题,提出使用双目相机进行闭环检测的方法.使用加入旋转不变性的FAST特征点和BRIEF描述子进行双目深度估计;引入局部地图的概念,使用单帧激光雷达数据与局部地图进行匹配,提高SLAM前端的精度.使用基于词袋(bag of words,BOW)模型的k叉树字典评估图片相似度从而完成闭环检测,最后构建全局优化问题并求解.与主流开源激光雷达SLAM算法的对比实验表明,研究内容改善了只使用激光雷达数据进行闭环检测的方法在相似度较高场景下失效的问题,并且在较大面积场景运行效果明显优于基于滤波的SLAM算法.展开更多
针对目前移动机器人视觉SLAM(simultaneous localization and mapping)研究中存在的实时性差、精确度不高、无法稠密化建图等问题,提出了一种基于RGB-D数据的实时SLAM算法。在本算法前端处理中,采用了鲁棒性与实时性更好的ORB特征检测...针对目前移动机器人视觉SLAM(simultaneous localization and mapping)研究中存在的实时性差、精确度不高、无法稠密化建图等问题,提出了一种基于RGB-D数据的实时SLAM算法。在本算法前端处理中,采用了鲁棒性与实时性更好的ORB特征检测。利用RANSAC算法对可能存在的误匹配点进行剔除完成初始匹配,对所得内点进行PNP求解,用于机器人相邻位姿的增量估计。在后端优化中,设计了一种遵循图优化思想的非线性优化方法对移动机器人位姿进行优化。同时结合闭环检测机制,提出了一种点云优化算法,用于抑制系统的累积误差,进一步提升位姿与点云的精确性。实验验证了本文所提方法能够迅速、准确地重构出稠密化的三维环境模型。展开更多
文摘地磁同步定位与构图(simultaneously localization and mapping,SLAM)无须先验地磁指纹库,即可实现基于智能手机的未知室内环境定位。然而,智能手机地磁SLAM仍受限于惯性定位精度差、因子图优化算法动态适应能力不足及大型场景SLAM应用系统性能恶化等技术瓶颈。为解决此问题,本文通过设计方差时序递增机制和多源关键数据帧,提出一种面向大型室内场景的地磁SLAM增强优化算法。首先,为了提高惯性定位精度,本文挖掘行人运动过程中呈现出的特征规律构建观测方程,并融合地磁环境信息实现手机端地磁SLAM。然后,针对因子图优化算法动态适应能力不足,采用前端卡尔曼滤波与后端因子图优化相结合的定位框架提升时效性,同时设计方差时序递增机制,动态融合不同定位方法。最后,为了缓解大型场景地磁SLAM性能恶化,在时序维度上扩展关键帧概念和特征表达能力,有效缓解大型场景地磁误匹配问题;结合多源数据设计稳健回环探测与匹配算法,构建关键帧评分机制降低空间密度,从而提高算法效率。试验结果表明,本文实现了大型室内场景闭环情形下的地磁SLAM,相比惯性定位和经典地磁SLAM,本文提出的地磁SLAM增强优化方法的位置均方根误差降低了18%~67%;并且在仅利用标准方法22.6%的关键帧数量的前提下,本文方法仍能保持更高精度、更平滑的定位结果;通过试验探究了参数设置对定位精度和运行时间的影响,明确了地磁图构建首要因素基函数体素网格边长。
文摘针对基于图优化的激光SLAM算法在高相似度的场景中闭环检测出错的问题,提出使用双目相机进行闭环检测的方法.使用加入旋转不变性的FAST特征点和BRIEF描述子进行双目深度估计;引入局部地图的概念,使用单帧激光雷达数据与局部地图进行匹配,提高SLAM前端的精度.使用基于词袋(bag of words,BOW)模型的k叉树字典评估图片相似度从而完成闭环检测,最后构建全局优化问题并求解.与主流开源激光雷达SLAM算法的对比实验表明,研究内容改善了只使用激光雷达数据进行闭环检测的方法在相似度较高场景下失效的问题,并且在较大面积场景运行效果明显优于基于滤波的SLAM算法.
文摘针对目前移动机器人视觉SLAM(simultaneous localization and mapping)研究中存在的实时性差、精确度不高、无法稠密化建图等问题,提出了一种基于RGB-D数据的实时SLAM算法。在本算法前端处理中,采用了鲁棒性与实时性更好的ORB特征检测。利用RANSAC算法对可能存在的误匹配点进行剔除完成初始匹配,对所得内点进行PNP求解,用于机器人相邻位姿的增量估计。在后端优化中,设计了一种遵循图优化思想的非线性优化方法对移动机器人位姿进行优化。同时结合闭环检测机制,提出了一种点云优化算法,用于抑制系统的累积误差,进一步提升位姿与点云的精确性。实验验证了本文所提方法能够迅速、准确地重构出稠密化的三维环境模型。