期刊文献+
共找到6,850篇文章
< 1 2 250 >
每页显示 20 50 100
PM_(2.5) probabilistic forecasting system based on graph generative network with graph U-nets architecture
1
作者 LI Yan-fei YANG Rui +1 位作者 DUAN Zhu LIU Hui 《Journal of Central South University》 2025年第1期304-318,共15页
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ... Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction. 展开更多
关键词 PM_(2.5)interval forecasting graph generative network graph U-Nets sparse Bayesian regression kernel density estimation spatial-temporal characteristics
在线阅读 下载PDF
Integration of Federated Learning and Graph Convolutional Networks for Movie Recommendation Systems
2
作者 Sony Peng Sophort Siet +3 位作者 Ilkhomjon Sadriddinov Dae-Young Kim Kyuwon Park Doo-Soon Park 《Computers, Materials & Continua》 2025年第5期2041-2057,共17页
Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that lever... Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that leverages user-item interactions to generate recommendations.However,it struggles with challenges like the cold-start problem,scalability issues,and data sparsity.To address these limitations,we develop a Graph Convolutional Networks(GCNs)model that captures the complex network of interactions between users and items,identifying subtle patterns that traditional methods may overlook.We integrate this GCNs model into a federated learning(FL)framework,enabling themodel to learn fromdecentralized datasets.This not only significantly enhances user privacy—a significant improvement over conventionalmodels but also reassures users about the safety of their data.Additionally,by securely incorporating demographic information,our approach further personalizes recommendations and mitigates the coldstart issue without compromising user data.We validate our RSs model using the openMovieLens dataset and evaluate its performance across six key metrics:Precision,Recall,Area Under the Receiver Operating Characteristic Curve(ROC-AUC),F1 Score,Normalized Discounted Cumulative Gain(NDCG),and Mean Reciprocal Rank(MRR).The experimental results demonstrate significant enhancements in recommendation quality,underscoring that combining GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems. 展开更多
关键词 Recommendation systems collaborative filtering graph convolutional networks federated learning framework
在线阅读 下载PDF
Graph Neural Network-Assisted Lion Swarm Optimization for Traffic Congestion Prediction in Intelligent Urban Mobility Systems
3
作者 Meshari D.Alanazi Gehan Elsayed +2 位作者 Turki M.Alanazi Anis Sahbani Amr Yousef 《Computer Modeling in Engineering & Sciences》 2025年第11期2277-2309,共33页
Traffic congestion plays a significant role in intelligent transportation systems(ITS)due to rapid urbanization and increased vehicle concentration.The congestion is dependent on multiple factors,such as limited road ... Traffic congestion plays a significant role in intelligent transportation systems(ITS)due to rapid urbanization and increased vehicle concentration.The congestion is dependent on multiple factors,such as limited road occupancy and vehicle density.Therefore,the transportation system requires an effective prediction model to reduce congestion issues in a dynamic environment.Conventional prediction systems face difficulties in identifying highly congested areas,which leads to reduced prediction accuracy.The problem is addressed by integrating Graph Neural Networks(GNN)with the Lion Swarm Optimization(LSO)framework to tackle the congestion prediction problem.Initially,the traffic information is collected and processed through a normalization process to scale the data and mitigate issues of overfitting and high dimensionality.Then,the traffic flow and temporal characteristic features are extracted to identify the connectivity of the road segment.From the connectivity and node relationship graph,modeling improves the overall prediction accuracy.During the analysis,the lion swarm optimization process utilizes the concepts of exploration and exploitation to understand the complex traffic dependencies,which helps predict high congestion on roads with minimal deviation errors.There are three core optimization phases:roaming,hunting,and migration,which enable the framework to make dynamic adjustments to enhance the predictions.The framework’s efficacy is evaluated using benchmark datasets,where the proposed work achieves 99.2%accuracy and minimizes the prediction deviation value by up to 2.5%compared to other methods.With the new framework,there was a more accurate prediction of realtime congestion,lower computational cost,and improved regulation of traffic flow.This system is easily implemented in intelligent transportation systems,smart cities,and self-driving cars,providing a robust and scalable solution for future traffic management. 展开更多
关键词 Intelligent transportation systems traffic congestion graph neural networks lion swarm optimization traffic dependencies smart cities
在线阅读 下载PDF
Quantum decoder design for subsystem surface code based on multi-head graph attention and edge weighting
4
作者 Nai-Hua Ji Hui-Qian Sun +2 位作者 Bo Xiao Ping-Li Song Hong-Yang Ma 《Chinese Physics B》 2025年第2期165-176,共12页
Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem s... Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem surface code with three-qubit check operators demonstrates significant application potential due to its simplified measurement operations and low logical error rates.However,the existing minimum-weight perfect matching(MWPM)algorithm exhibits high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoder based on a graph attention network(GAT),representing error syndromes as undirected graphs with edge weights,and employing a multihead attention mechanism to efficiently aggregate node features and enable parallel computation.Compared to MWPM,the GAT decoder exhibits linear growth in computational complexity,adapts to different quantum code structures,and demonstrates stronger robustness under high physical error rates.The experimental results demonstrate that the proposed decoder achieves an overall accuracy of 89.95%under various small code lattice sizes(L=2,3,4,5),with the logical error rate threshold increasing to 0.0078,representing an improvement of approximately 13.04%compared to the MWPM decoder.This result significantly outperforms traditional methods,showcasing superior performance under small code lattice sizes and providing a more efficient decoding solution for large-scale quantum error correction. 展开更多
关键词 quantum error correction graph attention network subsystem surface code circuit-level noise
原文传递
Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features
5
作者 Ghadah Naif Alwakid Samabia Tehsin +3 位作者 Mamoona Humayun Asad Farooq Ibrahim Alrashdi Amjad Alsirhani 《Computers, Materials & Continua》 2026年第1期1964-1984,共21页
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ... Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems. 展开更多
关键词 graph neural network image classification DermaMNIST dataset graph representation
在线阅读 下载PDF
Automatic Detection of Health-Related Rumors: A Dual-Graph Collaborative Reasoning Framework Based on Causal Logic and Knowledge Graph
6
作者 Ning Wang Haoran Lyu Yuchen Fu 《Computers, Materials & Continua》 2026年第1期2163-2193,共31页
With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or p... With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media. 展开更多
关键词 Health rumor detection causal graph knowledge graph dual-graph fusion
在线阅读 下载PDF
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
7
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
A Novel Unsupervised Structural Attack and Defense for Graph Classification
8
作者 Yadong Wang Zhiwei Zhang +2 位作者 Pengpeng Qiao Ye Yuan Guoren Wang 《Computers, Materials & Continua》 2026年第1期1761-1782,共22页
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev... Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations. 展开更多
关键词 graph classification graph neural networks adversarial attack
在线阅读 下载PDF
GFL-SAR: Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement
9
作者 Hefei Wang Ruichun Gu +2 位作者 Jingyu Wang Xiaolin Zhang Hui Wei 《Computers, Materials & Continua》 2026年第1期1683-1702,共20页
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi... Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks. 展开更多
关键词 graph federated learning GCN GNNs attention mechanism
在线阅读 下载PDF
Graph-Based Intrusion Detection with Explainable Edge Classification Learning
10
作者 Jaeho Shin Jaekwang Kim 《Computers, Materials & Continua》 2026年第1期610-635,共26页
Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to ... Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to changing attack patterns and complex network environments.In addition,it is difficult to explain the detection results logically using artificial intelligence.We propose a method for classifying network attacks using graph models to explain the detection results.First,we reconstruct the network packet data into a graphical structure.We then use a graph model to predict network attacks using edge classification.To explain the prediction results,we observed numerical changes by randomly masking and calculating the importance of neighbors,allowing us to extract significant subgraphs.Our experiments on six public datasets demonstrate superior performance with an average F1-score of 0.960 and accuracy of 0.964,outperforming traditional machine learning and other graph models.The visual representation of the extracted subgraphs highlights the neighboring nodes that have the greatest impact on the results,thus explaining detection.In conclusion,this study demonstrates that graph-based models are suitable for network attack detection in complex environments,and the importance of graph neighbors can be calculated to efficiently analyze the results.This approach can contribute to real-world network security analyses and provide a new direction in the field. 展开更多
关键词 Intrusion detection graph neural network explainable AI network attacks graphSAGE
在线阅读 下载PDF
Defect Identification Method of Power Grid Secondary Equipment Based on Coordination of Knowledge Graph and Bayesian Network Fusion
11
作者 Jun Xiong Peng Yang +1 位作者 Bohan Chen Zeming Chen 《Energy Engineering》 2026年第1期296-313,共18页
The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermo... The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency. 展开更多
关键词 Knowledge graph Bayesian network secondary equipment defect identification
在线阅读 下载PDF
Graph-Based Unified Settlement Framework for Complex Electricity Markets:Data Integration and Automated Refund Clearing
12
作者 Xiaozhe Guo Suyan Long +4 位作者 Ziyu Yue Yifan Wang Guanting Yin Yuyang Wang Zhaoyuan Wu 《Energy Engineering》 2026年第1期56-90,共35页
The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack... The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack a unified data structure,and depend heavily on manual intervention to process high-frequency and retroactive transactions.To address these limitations,a graph-based unified settlement framework is proposed to enhance automation,flexibility,and adaptability in electricity market settlements.A flexible attribute-graph model is employed to represent heterogeneousmulti-market data,enabling standardized integration,rapid querying,and seamless adaptation to evolving business requirements.An extensible operator library is designed to support configurable settlement rules,and a suite of modular tools—including dataset generation,formula configuration,billing templates,and task scheduling—facilitates end-to-end automated settlement processing.A robust refund-clearing mechanism is further incorporated,utilizing sandbox execution,data-version snapshots,dynamic lineage tracing,and real-time changecapture technologies to enable rapid and accurate recalculations under dynamic policy and data revisions.Case studies based on real-world data from regional Chinese markets validate the effectiveness of the proposed approach,demonstrating marked improvements in computational efficiency,system robustness,and automation.Moreover,enhanced settlement accuracy and high temporal granularity improve price-signal fidelity,promote cost-reflective tariffs,and incentivize energy-efficient and demand-responsive behavior among market participants.The method not only supports equitable and transparent market operations but also provides a generalizable,scalable foundation for modern electricity settlement platforms in increasingly complex and dynamic market environments. 展开更多
关键词 Electricity market market settlement data model graph database market refund clearing
在线阅读 下载PDF
UGEA-LMD: A Continuous-Time Dynamic Graph Representation Enhancement Framework for Lateral Movement Detection
13
作者 Jizhao Liu Yuanyuan Shao +2 位作者 Shuqin Zhang Fangfang Shan Jun Li 《Computers, Materials & Continua》 2026年第1期1924-1943,共20页
Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address thes... Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios. 展开更多
关键词 Advanced persistent threat(APTs) lateral movement detection continuous-time dynamic graph data enhancement
在线阅读 下载PDF
Overview and Graph Theory of the Immune System of Crustacean 被引量:1
14
作者 马寨璞 张繁霜 井爱芹 《Agricultural Science & Technology》 CAS 2010年第8期19-23,38,共6页
In this paper,different kinds of enzymes,immune factors and regulatory factors of the immune system of crustaceans are summarized and then combed systematically and thoroughly. According to the mutual influence and ef... In this paper,different kinds of enzymes,immune factors and regulatory factors of the immune system of crustaceans are summarized and then combed systematically and thoroughly. According to the mutual influence and effects of these factors,different symbolic forms are introduced to express the effects,and ultimately the whole node graph of the system is obtained. The graph theory can be used for further researches on the immune system of crustacean. 展开更多
关键词 CRUSTACEAN Immune system Immune factors graph theory
在线阅读 下载PDF
Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and Bayesian inference 被引量:7
15
作者 Xue‑Jun Jiang Wen Zhou Jie Hou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期58-75,共18页
Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research objec... Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective. 展开更多
关键词 CRDM Knowledge graph Fault diagnosis Bayesian inference RBT3-TextCNN Web interface
在线阅读 下载PDF
Factor graph based navigation and positioning for control system design:A review 被引量:5
16
作者 Xiwei WU Bing XIAO +2 位作者 Cihang WU Yiming GUO Lingwei LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期25-39,共15页
Navigation and positioning is an important and challenging problem in many control engineering applications.It provides feedback information to design controllers for systems.In this paper,a bibliographical review on ... Navigation and positioning is an important and challenging problem in many control engineering applications.It provides feedback information to design controllers for systems.In this paper,a bibliographical review on factor graph based navigation and positioning is presented.More specifically,the sensor modeling,the factor graph optimization methods,and the topology factor based cooperative localization are reviewed.The navigation and positioning methods via factor graph are considered and classified.Focuses in the current research of factor graph based navigation and positioning are also discussed with emphasis on its practical application.The limitations of the existing methods,some solutions for future techniques,and recommendations are finally given. 展开更多
关键词 Factor graph NAVIGATION Optimization methods POSITIONING Sensor modeling
原文传递
Sensor Configuration and Test for Fault Diagnoses of Subway Braking System Based on Signed Digraph Method 被引量:4
17
作者 ZUO Jianyong CHEN Zhongkai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期475-482,共8页
Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers. However, obtaining an optimized sensor set of these systems, which is a prerequisite for fault diagnosis, remains a majo... Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers. However, obtaining an optimized sensor set of these systems, which is a prerequisite for fault diagnosis, remains a major challenge. Available literature suggests that the configuration of sensors in these systems is presently dependent on the knowledge and engineering experiences of designers, which may lead to insufficient or redundant development of various sensors. In this paper, the optimization of sensor sets is addressed by using the signed digraph (SDG) method. The method is modified for use in braking systems by the introduction of an effect-function method to replace the traditional quantitative methods. Two criteria are adopted to evaluate the capability of the sensor sets, namely, observability and resolution. The sensors configuration method of braking system is proposed. It consists of generating bipartite graphs from SDG models and then solving the set cover problem using a greedy algorithm. To demonstrate the improvement, the sensor configuration of the HP2008 braking system is investigated and fault diagnosis on a test bench is performed. The test results show that SDG algorithm can improve single-fault resolution from 6 faults to 10 faults, and with additional four brake cylinder pressure (BCP) sensors it can cover up to 67 double faults which were not considered by traditional fault diagnosis system. SDG methods are suitable for reducing redundant sensors and that the sensor sets thereby obtained are capable of detecting typical faults, such as the failure of a release valve. This study investigates the formal extension of the SDG method to the sensor configuration of braking system, as well as the adaptation supported by the effect-function method. 展开更多
关键词 fault diagnosis subway braking system signed directed graph sensor set optimization.
在线阅读 下载PDF
The bond graph model of planar flexible multibody mechanical systems and its dynamic principle 被引量:5
18
作者 王中双 陆念力 陈集 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第1期6-11,共6页
In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint o... In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible muhibody mechanical systems by bond graphs and its dynamic principle are deseribed. To overcome the algebraic difficulty brought by differential causality anti nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example. 展开更多
关键词 flexible multibody system coupling dynamics bond graph dynamic principle
在线阅读 下载PDF
A graph deep learning method for landslide displacement prediction based on global navigation satellite system positioning 被引量:4
19
作者 Chuan Yang Yue Yin +2 位作者 Jiantong Zhang Penghui Ding Jian Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第1期29-38,共10页
The accurate prediction of displacement is crucial for landslide deformation monitoring and early warning.This study focuses on a landslide in Wenzhou Belt Highway and proposes a novel multivariate landslide displacem... The accurate prediction of displacement is crucial for landslide deformation monitoring and early warning.This study focuses on a landslide in Wenzhou Belt Highway and proposes a novel multivariate landslide displacement prediction method that relies on graph deep learning and Global Navigation Satellite System(GNSS)positioning.First model the graph structure of the monitoring system based on the engineering positions of the GNSS monitoring points and build the adjacent matrix of graph nodes.Then construct the historical and predicted time series feature matrixes using the processed temporal data including GNSS displacement,rainfall,groundwater table and soil moisture content and the graph structure.Last introduce the state-of-the-art graph deep learning GTS(Graph for Time Series)model to improve the accuracy and reliability of landslide displacement prediction which utilizes the temporal-spatial dependency of the monitoring system.This approach outperforms previous studies that only learned temporal features from a single monitoring point and maximally weighs the prediction performance and the priori graph of the monitoring system.The proposed method performs better than SVM,XGBoost,LSTM and DCRNN models in terms of RMSE(1.35 mm),MAE(1.14 mm)and MAPE(0.25)evaluation metrics,which is provided to be effective in future landslide failure early warning. 展开更多
关键词 Landslide displacement prediction GNSS positioning graph deep learning
在线阅读 下载PDF
Qualitative Algebra and Graph Theory Methods for Dynamic Trend Analysis of Continuous System 被引量:3
20
作者 张卫华 吴重光 王春利 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期308-315,共8页
Qualitative algebraic equations are the basis of qualitative simulation,which are used to express the dynamic behavior of steady-state continuous processes.When the values and operation of qualitative variables are re... Qualitative algebraic equations are the basis of qualitative simulation,which are used to express the dynamic behavior of steady-state continuous processes.When the values and operation of qualitative variables are redefined,qualitative algebraic equations can be transformed into signed direct graphs,which are frequently used to predict the trend of dynamic changes.However,it is difficult to use traditional qualitative algebra methods based on artificial trial and error to solve a complex problem for dynamic trends.An important aspect of modern qualitative algebra is to model and characterize complex systems with the corresponding computer-aided automatic reasoning.In this study,a qualitative affection equation based on multiple conditions is proposed,which enables the signed di-rect graphs to describe complex systems better and improves the fault diagnosis resolution.The application to an industrial case shows that the method performs well. 展开更多
关键词 qualitative algebraic equations signed directed graph affection equation multiple conditions dynamic trend analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部