期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Graph Pointer Network Based Hierarchical Curriculum Reinforcement Learning Method Solving Shuttle Tankers Scheduling Problem
1
作者 Xiaoyong Gao Yixu Yang +4 位作者 Diao Peng Shanghe Li Chaodong Tan Feifei Li Tao Chen 《Complex System Modeling and Simulation》 2024年第4期339-352,共14页
Shuttle tankers scheduling is an important task in offshore oil and gas transportation process,which involves operating time window fulfillment,optimal transportation planning,and proper inventory management.However,c... Shuttle tankers scheduling is an important task in offshore oil and gas transportation process,which involves operating time window fulfillment,optimal transportation planning,and proper inventory management.However,conventional approaches like Mixed lnteger Linear Programming(MlLP)or meta heuristic algorithms often fail in long running time.In this paper,a Graph Pointer Network(GPN)based Hierarchical Curriculum Reinforcement Learning(HCRl)method is proposed to solve Shuttle Tankers Scheduling Problem(STSP)The model is trained to divide STSP into voyage and operation stages and generate routing and inventory management decisions sequentially.An asynchronous training strategy is developed to address the coupling between stages.Comparison experiments demonstrate that the proposed HCRL method achieves 12%shortel tour lengths on average compared to heuristic algorithms.Additional experiments validate its generalizability to unseen instances and scalability to larger instances. 展开更多
关键词 graph pointer network hierarchical reinforcement learning curriculum learning shuttle tanker scheduling problem
原文传递
融合知识和语义信息的双编码器自动摘要模型 被引量:1
2
作者 贾莉 马廷淮 +1 位作者 桑晨扬 潘倩 《计算机工程与应用》 北大核心 2025年第7期213-221,共9页
为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating kn... 为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating knowledge and semantic information,KSDASum)。该方法采用双编码器对原文语义信息进行充分编码,文本编码器获取全文的语义信息,图结构编码器维护全文上下文结构信息。解码器部分采用基于Transformer结构和指针网络,更好地捕捉文本和结构信息进行交互,并利用指针网络的优势提高生成摘要的准确性。同时,训练过程中采用强化学习中自我批判的策略梯度优化模型能力。该方法在CNN/Daily Mail和XSum公开数据集上与GSUM生成式摘要方法相比,在评价指标上均获得最优的结果,证明了所提模型能够有效地利用知识和语义信息,提升了生成文本摘要的能力。 展开更多
关键词 知识图谱编码器 图注意力机制 指针网络 增强训练 自动摘要
在线阅读 下载PDF
基于分层强化学习的矿区无人驾驶车辆路径规划算法 被引量:3
3
作者 魏晓娟 李纪云 巩闯 《金属矿山》 CAS 北大核心 2024年第11期192-198,共7页
在复杂而危险的矿区环境中,矿区无人驾驶车辆的路径规划涉及如何使车辆智能地选择最佳路径,以实现安全和高效运行。然而,传统的路径规划算法难以有效应对矿区内多变的路况和环境。提出了一种基于分层强化学习的矿区无人驾驶车辆路径规... 在复杂而危险的矿区环境中,矿区无人驾驶车辆的路径规划涉及如何使车辆智能地选择最佳路径,以实现安全和高效运行。然而,传统的路径规划算法难以有效应对矿区内多变的路况和环境。提出了一种基于分层强化学习的矿区无人驾驶车辆路径规划算法,该算法通过分层强化学习技术训练图指针网络,求解矿区无人驾驶车辆路径规划问题。为将矿区无人驾驶车辆节点的向量映射成低维稠密向量,首先对图嵌入层的上下文向量进行均值化处理,用于保持网络的全局属性。再将交叉熵损失函数的范式加入分层强化学习的基准函数中,用于衡量2个不同驾驶车辆间的差异分布程度。试验结果表明:该算法在复杂的矿区环境下能够实现高效、安全、智能的路径选择,且模型收敛速度、时间花费上的优化效果优于传统算法和专业求解器,并具有良好的适应性和泛化能力。研究结果对于提高矿区无人驾驶的自主性、效率和安全性具有重要意义。 展开更多
关键词 矿区无人驾驶车辆 分层强化学习 路径规划 图指针网络
在线阅读 下载PDF
基于机器阅读理解的行车故障诊断知识抽取 被引量:1
4
作者 郑佳明 沈颖 +2 位作者 刘晓强 涂文奇 李柏岩 《智能计算机与应用》 2024年第9期56-62,共7页
行车故障调查单是对行车故障诊断过程的文本记录,基于这些历史记录构建知识图谱可以更好地支持行车故障诊断智能化。由于该语料具有实体嵌套、实体跨度大、关系重叠等特点,传统的命名实体识别和关系抽取模型难以对其进行有效的知识抽取... 行车故障调查单是对行车故障诊断过程的文本记录,基于这些历史记录构建知识图谱可以更好地支持行车故障诊断智能化。由于该语料具有实体嵌套、实体跨度大、关系重叠等特点,传统的命名实体识别和关系抽取模型难以对其进行有效的知识抽取。针对语料中存在的实体嵌套和长实体识别问题,本文提出了一种融合强化学习的机器阅读理解模型,以问答形式进行实体识别,以指针网络进行解码;对于语料中存在的关系重叠问题,将关系抽取分为先识别主体再识别客体的两阶段,将不同实体对的关系抽取进行隔离。实验结果表明,基于机器阅读理解的方法在行车故障诊断领域的知识抽取上具有较好的性能,可以有效支持领域知识图谱构建。 展开更多
关键词 行车故障诊断 知识图谱 知识抽取 机器阅读理解 指针网络
在线阅读 下载PDF
基于数据关联感知的无监督深度融合指针网络模型 被引量:1
5
作者 张长勇 周虎 《控制与决策》 EI CSCD 北大核心 2024年第2期499-508,共10页
为了提高组合优化问题可行解集合的收敛性和泛化性,根据不同无监督学习策略的特点,提出一种基于数据关联感知的深度融合指针网络模型(DMAG-PN),模型通过指针网络框架将Mogrifier LSTM、多头注意力机制与图卷积神经网络三者融合.首先,编... 为了提高组合优化问题可行解集合的收敛性和泛化性,根据不同无监督学习策略的特点,提出一种基于数据关联感知的深度融合指针网络模型(DMAG-PN),模型通过指针网络框架将Mogrifier LSTM、多头注意力机制与图卷积神经网络三者融合.首先,编码器模块中的嵌入层对输入序列进行编码,引入多头注意力机制获取编码矩阵中的特征信息;然后构建数据关联模型探索序列节点间的关联性,采用图卷积神经网络获取其多维度关联特征信息并融合互补,旨在生成多个嵌入有效捕捉序列深层的节点特征和边缘特征;最后,基于多头注意力机制的解码器模块以节点嵌入数据和融合图嵌入数据作为输入,生成选择下一个未访问节点的全局概率分布.采用对称旅行商问题作为测试问题,与当前先进算法进行对比,实验结果表明,所提出DMAG-PN模型在泛化性和求解精确性方面获得较大的改进与提高,预训练好的DMAG-PN模型能够直接对大规模实例进行端到端的求解,避免传统算法迭代搜索的过程,具有较高的求解效率. 展开更多
关键词 指针网络 Mogrifier LSTM 多头注意力机制 图卷积神经网络 旅行商问题 数据关联
原文传递
风网特征图程序设计原理 被引量:7
6
作者 刘剑 徐瑞龙 +1 位作者 李舒伶 赵屹峰 《辽宁工程技术大学学报(自然科学版)》 CAS 1993年第3期20-24,共5页
本文论述了计算机自动绘制风网特征图程序设计原理、方法及步骤。简要介绍了C语言程序关键模块。
关键词 风网特征图 独立通路 深度优先搜索 递归 指针
在线阅读 下载PDF
基于图注意力和表指针网络的中文事件抽取方法 被引量:2
7
作者 刘炜 马亚威 +1 位作者 彭艳 李卫民 《模式识别与人工智能》 EI CSCD 北大核心 2023年第5期459-470,共12页
现有的中文事件抽取方法存在触发词和论元依赖建模不足的问题,削弱事件内的信息交互,导致论元抽取性能低下,特别是论元角色存在重叠的情况下.对此,文中提出基于图注意力和表指针网络的中文事件抽取方法(Chinese Event Extraction Method... 现有的中文事件抽取方法存在触发词和论元依赖建模不足的问题,削弱事件内的信息交互,导致论元抽取性能低下,特别是论元角色存在重叠的情况下.对此,文中提出基于图注意力和表指针网络的中文事件抽取方法(Chinese Event Extraction Method Based on Graph Attention and Table Pointer Network,ATCEE).首先,融合预训练字符向量和词性标注向量作为特征输入,并利用双向长短期记忆网络,得到事件文本的强化语义特征.再将字符级建模的依存句法图引入图注意力网络,捕获文本中各组成成分的长距离依赖关系.然后,使用表填充的方法进行特征融合,进一步增强触发词和其对应的所有论元之间的依赖性.最后,将学习得到的表特征输入全连接层和表指针网络层,进行触发词和论元的联合抽取,使用表指针网络对论元边界进行解码,更好地识别长论元实体.实验表明:ATCEE在ACE2005和DuEE1.0这两个中文基准数据集上都有明显的性能提升,并且字符级依存特征和表填充策略在一定程度上可以解决论元角色重叠问题.ATCEE源代码地址如下:https://github.com/event6/ATCEE. 展开更多
关键词 中文事件抽取 论元角色重叠 图注意力网络 表填充 表指针网络
在线阅读 下载PDF
融合BERT-WWM和指针网络的旅游知识图谱构建研究 被引量:11
8
作者 徐春 李胜楠 《计算机工程与应用》 CSCD 北大核心 2022年第12期280-288,共9页
针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句... 针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。 展开更多
关键词 BERT-WWM 指针网络 旅游知识图谱 关系重叠 实体关系联合抽取
在线阅读 下载PDF
基于深度强化学习的组合优化研究进展 被引量:66
9
作者 李凯文 张涛 +3 位作者 王锐 覃伟健 贺惠晖 黄鸿 《自动化学报》 EI CAS CSCD 北大核心 2021年第11期2521-2537,共17页
组合优化问题广泛存在于国防、交通、工业、生活等各个领域,几十年来,传统运筹优化方法是解决组合优化问题的主要手段,但随着实际应用中问题规模的不断扩大、求解实时性的要求越来越高,传统运筹优化算法面临着很大的计算压力,很难实现... 组合优化问题广泛存在于国防、交通、工业、生活等各个领域,几十年来,传统运筹优化方法是解决组合优化问题的主要手段,但随着实际应用中问题规模的不断扩大、求解实时性的要求越来越高,传统运筹优化算法面临着很大的计算压力,很难实现组合优化问题的在线求解.近年来随着深度学习技术的迅猛发展,深度强化学习在围棋、机器人等领域的瞩目成果显示了其强大的学习能力与序贯决策能力.鉴于此,近年来涌现出了多个利用深度强化学习方法解决组合优化问题的新方法,具有求解速度快、模型泛化能力强的优势,为组合优化问题的求解提供了一种全新的思路.因此本文总结回顾近些年利用深度强化学习方法解决组合优化问题的相关理论方法与应用研究,对其基本原理、相关方法、应用研究进行总结和综述,并指出未来该方向亟待解决的若干问题. 展开更多
关键词 深度强化学习 组合优化问题 深度神经网络 图神经网络 指针网络
在线阅读 下载PDF
深度强化学习求解车辆路径问题的研究综述 被引量:10
10
作者 杨笑笑 柯琳 陈智斌 《计算机工程与应用》 CSCD 北大核心 2023年第5期1-13,共13页
车辆路径问题(VRP)是组合优化问题中经典的NP难问题,广泛应用于交通、物流等领域,随着问题规模和动态因素的增多,传统算法很难快速、智能地求解复杂的VRP问题。近年来随着人工智能技术的发展,尤其是深度强化学习(DRL)在AlphaGo中的成功... 车辆路径问题(VRP)是组合优化问题中经典的NP难问题,广泛应用于交通、物流等领域,随着问题规模和动态因素的增多,传统算法很难快速、智能地求解复杂的VRP问题。近年来随着人工智能技术的发展,尤其是深度强化学习(DRL)在AlphaGo中的成功应用,为路径问题求解提供了全新思路。鉴于此,针对近年来利用DRL求解VRP及其变体问题的模型进行文献综述。回顾了DRL求解VRP的相关思路,并梳理基于DRL求解VRP问题的关键步骤,对基于指针网络、图神经网络、Transformer和混合模型的四类求解方法分类总结,同时对目前基于DRL求解VRP及其变体问题的模型性能进行对比分析,总结了基于DRL求解VRP问题时遇到的挑战以及未来的研究方向。 展开更多
关键词 车辆路径问题 深度强化学习 指针网络 图神经网络 混合模型
在线阅读 下载PDF
面向C++学科文本的三元组抽取系统仿真 被引量:3
11
作者 杨泽森 田秀霞 赵红成 《计算机仿真》 北大核心 2023年第5期312-317,共6页
三元组信息通常以自然语言的形式存在于电子教材等非结构化文本中,现有模型难以理解其语义内容。为了从相关文档中精确提取三元组数据,提出一种基于实体映射的指针网络标注框架EPM(Entity Pair Mapping)。框架首先为每对实体分配唯一标... 三元组信息通常以自然语言的形式存在于电子教材等非结构化文本中,现有模型难以理解其语义内容。为了从相关文档中精确提取三元组数据,提出一种基于实体映射的指针网络标注框架EPM(Entity Pair Mapping)。框架首先为每对实体分配唯一标签,通过将尾实体建模为从编码到头实体的映射加强实体间的依赖,再利用基于双通道注意力机制的关系分类器为上述实体对分配关系类型,从而完成三元组的抽取任务。此外,构建C++学科知识数据集,并将EDA方法用于小样本的数据增强。实验表明,上述模型的F1分数比最优方法实现了1.2个百分点的增益。 展开更多
关键词 关系抽取 注意力机制 自然语言处理 知识图谱 指针网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部