Shuttle tankers scheduling is an important task in offshore oil and gas transportation process,which involves operating time window fulfillment,optimal transportation planning,and proper inventory management.However,c...Shuttle tankers scheduling is an important task in offshore oil and gas transportation process,which involves operating time window fulfillment,optimal transportation planning,and proper inventory management.However,conventional approaches like Mixed lnteger Linear Programming(MlLP)or meta heuristic algorithms often fail in long running time.In this paper,a Graph Pointer Network(GPN)based Hierarchical Curriculum Reinforcement Learning(HCRl)method is proposed to solve Shuttle Tankers Scheduling Problem(STSP)The model is trained to divide STSP into voyage and operation stages and generate routing and inventory management decisions sequentially.An asynchronous training strategy is developed to address the coupling between stages.Comparison experiments demonstrate that the proposed HCRL method achieves 12%shortel tour lengths on average compared to heuristic algorithms.Additional experiments validate its generalizability to unseen instances and scalability to larger instances.展开更多
为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating kn...为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating knowledge and semantic information,KSDASum)。该方法采用双编码器对原文语义信息进行充分编码,文本编码器获取全文的语义信息,图结构编码器维护全文上下文结构信息。解码器部分采用基于Transformer结构和指针网络,更好地捕捉文本和结构信息进行交互,并利用指针网络的优势提高生成摘要的准确性。同时,训练过程中采用强化学习中自我批判的策略梯度优化模型能力。该方法在CNN/Daily Mail和XSum公开数据集上与GSUM生成式摘要方法相比,在评价指标上均获得最优的结果,证明了所提模型能够有效地利用知识和语义信息,提升了生成文本摘要的能力。展开更多
现有的中文事件抽取方法存在触发词和论元依赖建模不足的问题,削弱事件内的信息交互,导致论元抽取性能低下,特别是论元角色存在重叠的情况下.对此,文中提出基于图注意力和表指针网络的中文事件抽取方法(Chinese Event Extraction Method...现有的中文事件抽取方法存在触发词和论元依赖建模不足的问题,削弱事件内的信息交互,导致论元抽取性能低下,特别是论元角色存在重叠的情况下.对此,文中提出基于图注意力和表指针网络的中文事件抽取方法(Chinese Event Extraction Method Based on Graph Attention and Table Pointer Network,ATCEE).首先,融合预训练字符向量和词性标注向量作为特征输入,并利用双向长短期记忆网络,得到事件文本的强化语义特征.再将字符级建模的依存句法图引入图注意力网络,捕获文本中各组成成分的长距离依赖关系.然后,使用表填充的方法进行特征融合,进一步增强触发词和其对应的所有论元之间的依赖性.最后,将学习得到的表特征输入全连接层和表指针网络层,进行触发词和论元的联合抽取,使用表指针网络对论元边界进行解码,更好地识别长论元实体.实验表明:ATCEE在ACE2005和DuEE1.0这两个中文基准数据集上都有明显的性能提升,并且字符级依存特征和表填充策略在一定程度上可以解决论元角色重叠问题.ATCEE源代码地址如下:https://github.com/event6/ATCEE.展开更多
针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句...针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。展开更多
基金supported by the National Natural Science Foundation of China(Nos.22178383 and 21706282)Beijing Natural Science Foundation(No.2232021)Research Foundation of China University of Petroleum(Beijing)(No.2462020BJRC004).
文摘Shuttle tankers scheduling is an important task in offshore oil and gas transportation process,which involves operating time window fulfillment,optimal transportation planning,and proper inventory management.However,conventional approaches like Mixed lnteger Linear Programming(MlLP)or meta heuristic algorithms often fail in long running time.In this paper,a Graph Pointer Network(GPN)based Hierarchical Curriculum Reinforcement Learning(HCRl)method is proposed to solve Shuttle Tankers Scheduling Problem(STSP)The model is trained to divide STSP into voyage and operation stages and generate routing and inventory management decisions sequentially.An asynchronous training strategy is developed to address the coupling between stages.Comparison experiments demonstrate that the proposed HCRL method achieves 12%shortel tour lengths on average compared to heuristic algorithms.Additional experiments validate its generalizability to unseen instances and scalability to larger instances.
文摘为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating knowledge and semantic information,KSDASum)。该方法采用双编码器对原文语义信息进行充分编码,文本编码器获取全文的语义信息,图结构编码器维护全文上下文结构信息。解码器部分采用基于Transformer结构和指针网络,更好地捕捉文本和结构信息进行交互,并利用指针网络的优势提高生成摘要的准确性。同时,训练过程中采用强化学习中自我批判的策略梯度优化模型能力。该方法在CNN/Daily Mail和XSum公开数据集上与GSUM生成式摘要方法相比,在评价指标上均获得最优的结果,证明了所提模型能够有效地利用知识和语义信息,提升了生成文本摘要的能力。
文摘现有的中文事件抽取方法存在触发词和论元依赖建模不足的问题,削弱事件内的信息交互,导致论元抽取性能低下,特别是论元角色存在重叠的情况下.对此,文中提出基于图注意力和表指针网络的中文事件抽取方法(Chinese Event Extraction Method Based on Graph Attention and Table Pointer Network,ATCEE).首先,融合预训练字符向量和词性标注向量作为特征输入,并利用双向长短期记忆网络,得到事件文本的强化语义特征.再将字符级建模的依存句法图引入图注意力网络,捕获文本中各组成成分的长距离依赖关系.然后,使用表填充的方法进行特征融合,进一步增强触发词和其对应的所有论元之间的依赖性.最后,将学习得到的表特征输入全连接层和表指针网络层,进行触发词和论元的联合抽取,使用表指针网络对论元边界进行解码,更好地识别长论元实体.实验表明:ATCEE在ACE2005和DuEE1.0这两个中文基准数据集上都有明显的性能提升,并且字符级依存特征和表填充策略在一定程度上可以解决论元角色重叠问题.ATCEE源代码地址如下:https://github.com/event6/ATCEE.
文摘针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。