Identifying influential nodes in complex networks is of both theoretical and practical importance. Existing methods identify influential nodes based on their positions in the network and assume that the nodes are homo...Identifying influential nodes in complex networks is of both theoretical and practical importance. Existing methods identify influential nodes based on their positions in the network and assume that the nodes are homogeneous. However, node heterogeneity (i.e., different attributes such as interest, energy, age, and so on ) ubiquitously exists and needs to be taken into consideration. In this paper, we conduct an investigation into node attributes and propose a graph signal pro- cessing based centrality (GSPC) method to identify influential nodes considering both the node attributes and the network topology. We first evaluate our GSPC method using two real-world datasets. The results show that our GSPC method effectively identifies influential nodes, which correspond well with the underlying ground truth. This is compatible to the previous eigenvector centrality and principal component centrality methods under circumstances where the nodes are homogeneous. In addition, spreading analysis shows that the GSPC method has a positive effect on the spreading dynamics.展开更多
Objective To construct symptom-formula-herb heterogeneous graphs structured Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)dataset and explore an optimal learning method represented with node attributes based o...Objective To construct symptom-formula-herb heterogeneous graphs structured Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)dataset and explore an optimal learning method represented with node attributes based on graph convolutional network(GCN).Methods Clauses that contain symptoms,formulas,and herbs were abstracted from Treatise on Febrile Diseases to construct symptom-formula-herb heterogeneous graphs,which were used to propose a node representation learning method based on GCN−the Traditional Chinese Medicine Graph Convolution Network(TCM-GCN).The symptom-formula,symptom-herb,and formula-herb heterogeneous graphs were processed with the TCM-GCN to realize high-order propagating message passing and neighbor aggregation to obtain new node representation attributes,and thus acquiring the nodes’sum-aggregations of symptoms,formulas,and herbs to lay a foundation for the downstream tasks of the prediction models.Results Comparisons among the node representations with multi-hot encoding,non-fusion encoding,and fusion encoding showed that the Precision@10,Recall@10,and F1-score@10 of the fusion encoding were 9.77%,6.65%,and 8.30%,respectively,higher than those of the non-fusion encoding in the prediction studies of the model.Conclusion Node representations by fusion encoding achieved comparatively ideal results,indicating the TCM-GCN is effective in realizing node-level representations of heterogeneous graph structured Treatise on Febrile Diseases dataset and is able to elevate the performance of the downstream tasks of the diagnosis model.展开更多
针对传统的图卷积网络节点嵌入过程中接受邻域范围小的问题,本文提出了一种基于改进GraphSAGE算法的高光谱图像分类网络.首先,利用超像素分割算法对原始图像进行预处理,减少图节点的个数,既最大化保留了原始图像的局部拓扑结构信息,又...针对传统的图卷积网络节点嵌入过程中接受邻域范围小的问题,本文提出了一种基于改进GraphSAGE算法的高光谱图像分类网络.首先,利用超像素分割算法对原始图像进行预处理,减少图节点的个数,既最大化保留了原始图像的局部拓扑结构信息,又降低了算法的复杂度,缩短运算时间;其次,采用改进的GraphSAGE算法,对目标节点进行平均采样,选用平均聚合函数对邻居节点进行聚合,降低空间复杂度.在公开的高光谱图像数据集Pavia University和Kenndy Space Center上与相关模型进行对比,实验证明,基于改进GraphSAGE算法的高光谱图像分类网络可以取得较好的分类结果.展开更多
In order to study the nodes importance and its evolution process of the railway network of SREB (Silk Road Economic Belt), we construct the network (RNSREB) based on Graph Theory, which focuses on the time intervals a...In order to study the nodes importance and its evolution process of the railway network of SREB (Silk Road Economic Belt), we construct the network (RNSREB) based on Graph Theory, which focuses on the time intervals according to actually railway network, railway project under construction and the national railway network of medium-and long-term plan. The algorithms for vital nodes evaluation are analyzed, the evaluation method on nodes importance of RNSREB is proposed, the quantized values of each node are calculated with Pajek, and TOP20 core nodes of the network with different coefficients and time intervals are determined respectively. Then the evolution process of TOP20 critical nodes with 4 periods is contrasted and analyzed. It is indicated that some vital nodes newly discovered (Geermu, Maduo, Ruoqiang) should be concerned.展开更多
In this paper, we study the connectivity of multihop wireless networks under the log-normal shadowing model by investigating the precise distribution of the number of isolated nodes. Under such a realistic shadowing m...In this paper, we study the connectivity of multihop wireless networks under the log-normal shadowing model by investigating the precise distribution of the number of isolated nodes. Under such a realistic shadowing model, all previous known works on the distribution of the number of isolated nodes were obtained only based on simulation studies or by ignoring the important boundary effect to avoid the challenging technical analysis, and thus cannot be applied to any practical wireless networks. It is extremely challenging to take the complicated boundary effect into consideration under such a realistic model because the transmission area of each node is an irregular region other than a circular area. Assume that the wireless nodes are represented by a Poisson point process with densitynover a unit-area disk, and that the transmission power is properly chosen so that the expected node degree of the network equals lnn + ξ (n), where ξ (n) approaches to a constant ξ as n →?∞. Under such a shadowing model with the boundary effect taken into consideration, we proved that the total number of isolated nodes is asymptotically Poisson with mean e$ {-ξ}. The Brun’s sieve is utilized to derive the precise asymptotic distribution. Our results can be used as design guidelines for any practical multihop wireless network where both the shadowing and boundary effects must be taken into consideration.展开更多
阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood...阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood AgGrEgation,GraphNAGE)的AD分类新方法.首先进行图数据建模,将AD数据样本表示为图数据.采用基于互信息(Mutual Information,MI)的特征选择方法,从样本的114维大脑皮层与皮层下感兴趣区域(Cerebral Cortex and Subcortical Regions Of Interest,CCS-ROI)的体积特征中选取重要性高的体积特征,并将其用于节点建模.提出基于相似性度量的关系建模方法,利用重要性高的体积特征、遗传基因、人口统计信息和认知评分对样本之间的关系进行建模.进而构建GraphNAGE,针对每个节点,基于与该节点相关的边的权重进行最近邻域采样,然后使用均值聚合方法对采样得到的邻居节点和中心节点的数据进行聚合,最后通过一个全连接层和一个Softmax层实现AD分类.在TADPOLE(The Alzheimer’s Disease Prediction Of Longitudinal Evolution)数据集上进行实验,结果表明:本文提出的AD分类方法的准确率(ACCuracy,ACC)为98.20%,F_(1)分数为97.34%,曲线下面积(Area Under Curve,AUC)为97.80%.实验结果表明:本文提出的AD分类方法充分利用了AD数据样本之间的相关性,其性能优于传统的基于机器学习、深度学习和图神经网络(Graph Neural Network,GNN)的AD分类方法.展开更多
In order to study the nodes importance of the aviation network of SREB (Silk Road Economic Belt), we construct the network (ANSREB) based on Graph Theory that focused on the actually situation of civil aviation transp...In order to study the nodes importance of the aviation network of SREB (Silk Road Economic Belt), we construct the network (ANSREB) based on Graph Theory that focused on the actually situation of civil aviation transportation of SREB. We analyzed the evaluation algorithms for nodes importance, proposed the evaluation method for nodes importance of ANSREB;the quantized values of each node (Degree, Betweennesss, Closeness) are calculated with Pajek and traffic data, and determined TOP 20 critical nodes of the network on two different conditions respectively (without and within International routes). Then we contrasted and analyzed the reason that affects the ranking of those vital nodes, which has the character of highly concentration of business and dominant status.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61231010)the Fundamental Research Funds for the Central Universities,China(Grant No.HUST No.2012QN076)
文摘Identifying influential nodes in complex networks is of both theoretical and practical importance. Existing methods identify influential nodes based on their positions in the network and assume that the nodes are homogeneous. However, node heterogeneity (i.e., different attributes such as interest, energy, age, and so on ) ubiquitously exists and needs to be taken into consideration. In this paper, we conduct an investigation into node attributes and propose a graph signal pro- cessing based centrality (GSPC) method to identify influential nodes considering both the node attributes and the network topology. We first evaluate our GSPC method using two real-world datasets. The results show that our GSPC method effectively identifies influential nodes, which correspond well with the underlying ground truth. This is compatible to the previous eigenvector centrality and principal component centrality methods under circumstances where the nodes are homogeneous. In addition, spreading analysis shows that the GSPC method has a positive effect on the spreading dynamics.
基金New-Generation Artificial Intelligence-Major Program in the Sci-Tech Innovation 2030 Agenda from the Ministry of Science and Technology of China(2018AAA0102100)Hunan Provincial Department of Education key project(21A0250)The First Class Discipline Open Fund of Hunan University of Traditional Chinese Medicine(2022ZYX08)。
文摘Objective To construct symptom-formula-herb heterogeneous graphs structured Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)dataset and explore an optimal learning method represented with node attributes based on graph convolutional network(GCN).Methods Clauses that contain symptoms,formulas,and herbs were abstracted from Treatise on Febrile Diseases to construct symptom-formula-herb heterogeneous graphs,which were used to propose a node representation learning method based on GCN−the Traditional Chinese Medicine Graph Convolution Network(TCM-GCN).The symptom-formula,symptom-herb,and formula-herb heterogeneous graphs were processed with the TCM-GCN to realize high-order propagating message passing and neighbor aggregation to obtain new node representation attributes,and thus acquiring the nodes’sum-aggregations of symptoms,formulas,and herbs to lay a foundation for the downstream tasks of the prediction models.Results Comparisons among the node representations with multi-hot encoding,non-fusion encoding,and fusion encoding showed that the Precision@10,Recall@10,and F1-score@10 of the fusion encoding were 9.77%,6.65%,and 8.30%,respectively,higher than those of the non-fusion encoding in the prediction studies of the model.Conclusion Node representations by fusion encoding achieved comparatively ideal results,indicating the TCM-GCN is effective in realizing node-level representations of heterogeneous graph structured Treatise on Febrile Diseases dataset and is able to elevate the performance of the downstream tasks of the diagnosis model.
文摘针对传统的图卷积网络节点嵌入过程中接受邻域范围小的问题,本文提出了一种基于改进GraphSAGE算法的高光谱图像分类网络.首先,利用超像素分割算法对原始图像进行预处理,减少图节点的个数,既最大化保留了原始图像的局部拓扑结构信息,又降低了算法的复杂度,缩短运算时间;其次,采用改进的GraphSAGE算法,对目标节点进行平均采样,选用平均聚合函数对邻居节点进行聚合,降低空间复杂度.在公开的高光谱图像数据集Pavia University和Kenndy Space Center上与相关模型进行对比,实验证明,基于改进GraphSAGE算法的高光谱图像分类网络可以取得较好的分类结果.
文摘In order to study the nodes importance and its evolution process of the railway network of SREB (Silk Road Economic Belt), we construct the network (RNSREB) based on Graph Theory, which focuses on the time intervals according to actually railway network, railway project under construction and the national railway network of medium-and long-term plan. The algorithms for vital nodes evaluation are analyzed, the evaluation method on nodes importance of RNSREB is proposed, the quantized values of each node are calculated with Pajek, and TOP20 core nodes of the network with different coefficients and time intervals are determined respectively. Then the evolution process of TOP20 critical nodes with 4 periods is contrasted and analyzed. It is indicated that some vital nodes newly discovered (Geermu, Maduo, Ruoqiang) should be concerned.
文摘In this paper, we study the connectivity of multihop wireless networks under the log-normal shadowing model by investigating the precise distribution of the number of isolated nodes. Under such a realistic shadowing model, all previous known works on the distribution of the number of isolated nodes were obtained only based on simulation studies or by ignoring the important boundary effect to avoid the challenging technical analysis, and thus cannot be applied to any practical wireless networks. It is extremely challenging to take the complicated boundary effect into consideration under such a realistic model because the transmission area of each node is an irregular region other than a circular area. Assume that the wireless nodes are represented by a Poisson point process with densitynover a unit-area disk, and that the transmission power is properly chosen so that the expected node degree of the network equals lnn + ξ (n), where ξ (n) approaches to a constant ξ as n →?∞. Under such a shadowing model with the boundary effect taken into consideration, we proved that the total number of isolated nodes is asymptotically Poisson with mean e$ {-ξ}. The Brun’s sieve is utilized to derive the precise asymptotic distribution. Our results can be used as design guidelines for any practical multihop wireless network where both the shadowing and boundary effects must be taken into consideration.
文摘阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood AgGrEgation,GraphNAGE)的AD分类新方法.首先进行图数据建模,将AD数据样本表示为图数据.采用基于互信息(Mutual Information,MI)的特征选择方法,从样本的114维大脑皮层与皮层下感兴趣区域(Cerebral Cortex and Subcortical Regions Of Interest,CCS-ROI)的体积特征中选取重要性高的体积特征,并将其用于节点建模.提出基于相似性度量的关系建模方法,利用重要性高的体积特征、遗传基因、人口统计信息和认知评分对样本之间的关系进行建模.进而构建GraphNAGE,针对每个节点,基于与该节点相关的边的权重进行最近邻域采样,然后使用均值聚合方法对采样得到的邻居节点和中心节点的数据进行聚合,最后通过一个全连接层和一个Softmax层实现AD分类.在TADPOLE(The Alzheimer’s Disease Prediction Of Longitudinal Evolution)数据集上进行实验,结果表明:本文提出的AD分类方法的准确率(ACCuracy,ACC)为98.20%,F_(1)分数为97.34%,曲线下面积(Area Under Curve,AUC)为97.80%.实验结果表明:本文提出的AD分类方法充分利用了AD数据样本之间的相关性,其性能优于传统的基于机器学习、深度学习和图神经网络(Graph Neural Network,GNN)的AD分类方法.
文摘In order to study the nodes importance of the aviation network of SREB (Silk Road Economic Belt), we construct the network (ANSREB) based on Graph Theory that focused on the actually situation of civil aviation transportation of SREB. We analyzed the evaluation algorithms for nodes importance, proposed the evaluation method for nodes importance of ANSREB;the quantized values of each node (Degree, Betweennesss, Closeness) are calculated with Pajek and traffic data, and determined TOP 20 critical nodes of the network on two different conditions respectively (without and within International routes). Then we contrasted and analyzed the reason that affects the ranking of those vital nodes, which has the character of highly concentration of business and dominant status.