Hardware/software(HW/SW) partitioning is one of the key processes in an embedded system.It is used to determine which system components are assigned to hardware and which are processed by software.In contrast with p...Hardware/software(HW/SW) partitioning is one of the key processes in an embedded system.It is used to determine which system components are assigned to hardware and which are processed by software.In contrast with previous research that focuses on developing efficient heuristic,we focus on the pre-process of the task graph before the HW/SW partitioning in this paper,that is,enumerating all the sub-graphs that meet the requirements.Experimental results showed that the original graph can be reduced to 67% in the worst-case scenario and 58% in the best-case scenario.In conclusion,the reduced task graph saved hardware area while improving partitioning speed and accuracy.展开更多
This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,th...This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,that involves a frame of reference in spatial domain to localize and/or track any object.Thefield of multiple object tracking has seen a lot of research,but researchers have considered the background as redundant.However,in object tracking,the back-ground plays a vital role and leads to definite improvement in the overall process of tracking.In the present work an algorithm is proposed for the multiple object tracking through background learning.The learning framework is based on graph embedding approach for localizing multiple objects.The graph utilizes the inher-ent capabilities of depth modelling that assist in prior to track occlusion avoidance among multiple objects.The proposed algorithm has been compared with the recent work available in literature on numerous performance evaluation measures.It is observed that our proposed algorithm gives better performance.展开更多
基金Supported by the National Natural Science Foundation of China (60970016,61173032)
文摘Hardware/software(HW/SW) partitioning is one of the key processes in an embedded system.It is used to determine which system components are assigned to hardware and which are processed by software.In contrast with previous research that focuses on developing efficient heuristic,we focus on the pre-process of the task graph before the HW/SW partitioning in this paper,that is,enumerating all the sub-graphs that meet the requirements.Experimental results showed that the original graph can be reduced to 67% in the worst-case scenario and 58% in the best-case scenario.In conclusion,the reduced task graph saved hardware area while improving partitioning speed and accuracy.
文摘This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,that involves a frame of reference in spatial domain to localize and/or track any object.Thefield of multiple object tracking has seen a lot of research,but researchers have considered the background as redundant.However,in object tracking,the back-ground plays a vital role and leads to definite improvement in the overall process of tracking.In the present work an algorithm is proposed for the multiple object tracking through background learning.The learning framework is based on graph embedding approach for localizing multiple objects.The graph utilizes the inher-ent capabilities of depth modelling that assist in prior to track occlusion avoidance among multiple objects.The proposed algorithm has been compared with the recent work available in literature on numerous performance evaluation measures.It is observed that our proposed algorithm gives better performance.