Let G be a simple connected graph with pendant vertex set ?V and nonpendant vertex set V_0. The signless Laplacian matrix of G is denoted by Q(G). The signless Dirichlet eigenvalue is a real number λ such that the...Let G be a simple connected graph with pendant vertex set ?V and nonpendant vertex set V_0. The signless Laplacian matrix of G is denoted by Q(G). The signless Dirichlet eigenvalue is a real number λ such that there exists a function f ≠ 0 on V(G) such that Q(G)f(u) = λf(u) for u ∈ V_0 and f(u) = 0 for u ∈ ?V. The signless Dirichlet spectral radiusλ(G) is the largest signless Dirichlet eigenvalue. In this paper, the unicyclic graphs with the largest signless Dirichlet spectral radius among all unicyclic graphs with a given degree sequence are characterized.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.1127125611601208)
文摘Let G be a simple connected graph with pendant vertex set ?V and nonpendant vertex set V_0. The signless Laplacian matrix of G is denoted by Q(G). The signless Dirichlet eigenvalue is a real number λ such that there exists a function f ≠ 0 on V(G) such that Q(G)f(u) = λf(u) for u ∈ V_0 and f(u) = 0 for u ∈ ?V. The signless Dirichlet spectral radiusλ(G) is the largest signless Dirichlet eigenvalue. In this paper, the unicyclic graphs with the largest signless Dirichlet spectral radius among all unicyclic graphs with a given degree sequence are characterized.