期刊文献+
共找到2,330篇文章
< 1 2 117 >
每页显示 20 50 100
A Grid-based Graph Data Model for Pedestrian Route Analysis in a Micro-spatial Environment
1
作者 Yi-Quan Song Lei Niu +1 位作者 Long He Rui Wang 《International Journal of Automation and computing》 EI CSCD 2016年第3期296-304,共9页
Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accur... Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accurately, the concept of a grid is presented, and grid-based methods for modeling geospatial objects are described. The semantic constitution of a building environment and the methods for modeling rooms, corridors, and staircases with grid objects are described. Based on the topology relationship between grid objects, a grid-based graph for a building environment is presented, and the corresponding route algorithm for pedestrians is proposed. The main advantages of the graph model proposed in this paper are as follows: 1) consideration of both semantic and geometric information, 2) consideration of the need for accurate geometric representation of the micro-spatial environment and the efficiency of pedestrian route analysis, 3) applicability of the graph model to route analysis in both static and dynamic environments, and 4) ability of the multi-hierarchical route analysis to integrate the multiple levels of pedestrian decision characteristics, from the high to the low, to determine the optimal path. 展开更多
关键词 graph data model route analysis PEDESTRIAN micro-spatiM environment building.
原文传递
Modeling and application of marketing and distribution data based on graph computing
2
作者 Kai Xiao Daoxing Li +1 位作者 Xiaohui Wang Pengtian Guo 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期448-460,共13页
Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to dist... Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to distribution grids;this,however,increases the complexity of the information structure of marketing and distribution businesses.The existing unified data model and the coordinated application of marketing and distribution suffer from various drawbacks.As a solution,this paper presents a data model of"one graph of marketing and distribution"and a framework for graph computing,by analyzing the current trends of business and data in the marketing and distribution fields and using graph data theory.Specifically,this work aims to determine the correlation between distribution transformers and marketing users,which is crucial for elucidating the connection between marketing and distribution.In this manner,a novel identification algorithm is proposed based on the collected data for marketing and distribution.Lastly,a forecasting application is developed based on the proposed algorithm to realize the coordinated prediction and consumption of distributed photovoltaic power generation and distribution loads.Furthermore,an operation and maintenance(O&M)knowledge graph reasoning application is developed to improve the intelligent O&M ability of marketing and distribution equipment. 展开更多
关键词 Marketing and distribution connection graph data graph computing Knowledge graph data model
在线阅读 下载PDF
Efficient Publication of Distributed and Overlapping Graph Data Under Differential Privacy
3
作者 Xu Zheng Lizong Zhang +1 位作者 Kaiyang Li Xi Zeng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第2期235-243,共9页
Graph data publication has been considered as an important step for data analysis and mining.Graph data,which provide knowledge on interactions among entities,can be locally generated and held by distributed data owne... Graph data publication has been considered as an important step for data analysis and mining.Graph data,which provide knowledge on interactions among entities,can be locally generated and held by distributed data owners.These data are usually sensitive and private,because they may be related to owners’personal activities and can be hijacked by adversaries to conduct inference attacks.Current solutions either consider private graph data as centralized contents or disregard the overlapping of graphs in distributed manners.Therefore,this work proposes a novel framework for distributed graph publication.In this framework,differential privacy is applied to justify the safety of the published contents.It includes four phases,i.e.,graph combination,plan construction sharing,data perturbation,and graph reconstruction.The published graph selection is guided by one data coordinator,and each graph is perturbed carefully with the Laplace mechanism.The problem of graph selection is formulated and proven to be NP-complete.Then,a heuristic algorithm is proposed for selection.The correctness of the combined graph and the differential privacy on all edges are analyzed.This study also discusses a scenario without a data coordinator and proposes some insights into graph publication. 展开更多
关键词 graph data distributed data publication differential privacy
原文传递
A Secure Microgrid Data Storage Strategy with Directed Acyclic Graph Consensus Mechanism
4
作者 Jian Shang Runmin Guan Wei Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2609-2626,共18页
The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to ... The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks. 展开更多
关键词 MICROGRID data security storage node trust degree directed acyclic graph data structure consensus mechanism secure multi-party computing blockchain
在线阅读 下载PDF
Constructing Three-Dimension Space Graph for Outlier Detection Algorithms in Data Mining 被引量:1
5
作者 ZHANG Jing 1,2 , SUN Zhi-hui 1 1.Department of Computer Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China 2.Department of Electricity and Information Engineering, Jiangsu University, Zhenjiang 212001, Jiangsu, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期585-589,共5页
Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional sp... Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery. 展开更多
关键词 OUTLIER DETECTION three-dimensional space graph data mining
在线阅读 下载PDF
Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model 被引量:1
6
作者 FANG Chcng LIU Jun LEI Zhenming 《China Communications》 SCIE CSCD 2014年第12期13-25,共13页
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap... With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods. 展开更多
关键词 cloud computing massive data graph model web usage mining
在线阅读 下载PDF
Graph Regularized L_p Smooth Non-negative Matrix Factorization for Data Representation 被引量:10
7
作者 Chengcai Leng Hai Zhang +2 位作者 Guorong Cai Irene Cheng Anup Basu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第2期584-595,共12页
This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ... This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods. 展开更多
关键词 data clustering dimensionality reduction graph REGULARIZATION LP SMOOTH non-negative matrix factorization(SNMF)
在线阅读 下载PDF
A Graph Drawing Algorithm for Visualizing Multivariate Categorical Data
8
作者 HUANG Jingwei HUANG Jie 《Wuhan University Journal of Natural Sciences》 CAS 2007年第2期239-242,共4页
In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify pat... In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify patterns, trends and relationship within the data. A mathematical model for the graph layout problem is deduced and a spectral graph drawing algorithm for visualizing multivariate categorical data is proposed. The experiments show that the drawings by the algorithm well capture the structures of multivariate categorical data and the computing speed is fast. 展开更多
关键词 multivariate categorical data graph graph drawing ALGORITHMS
在线阅读 下载PDF
A graph-based sliding window multi-join over data stream 被引量:1
9
作者 ZHANG Liang Byeong-Seob You +2 位作者 GE Jun-wei LIU Zhao-hong Hae-Young Bae 《重庆邮电大学学报(自然科学版)》 2007年第3期362-366,共5页
Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used fo... Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment. 展开更多
关键词 数据流 查询优化 图论 可调整窗口
在线阅读 下载PDF
Decomposition of Graphs Representing the Contents of Multimedia Data
10
作者 Hochin Teruhisa 《通讯和计算机(中英文版)》 2010年第4期43-49,共7页
关键词 多媒体内容 分解图 数据模型 多媒体数据 递归调用 火焰传播 实例 递归图
在线阅读 下载PDF
Extracting multiple layers from data having graph structures
11
作者 ITOKAWA Yuko UCHIDA Tomoyuki NAKAMURA Yasuaki 《重庆邮电学院学报(自然科学版)》 2004年第5期149-155,共7页
Much data such as geometric image data and drawings have graph structures. Such data are called graph structured data. In order to manage efficiently such graph structured data, we need to analyze and abstract graph s... Much data such as geometric image data and drawings have graph structures. Such data are called graph structured data. In order to manage efficiently such graph structured data, we need to analyze and abstract graph structures of such data. The purpose of this paper is to find knowledge representations which indicate plural abstractions of graph structured data. Firstly, we introduce a term graph as a graph pattern having structural variables, and a substitution over term graphs which is graph rewriting system. Next, for a graph G, we define a multiple layer ( g,(θ 1,…,θ k )) of G as a pair of a term graph g and a list of k substitutions θ 1,…,θ k such that G can be obtained from g by applying substitutions θ 1,…,θ k to g. In the same way, for a set S of graphs, we also define a multiple layer for S as a pair ( D,Θ ) of a set D of term graphs and a list Θ of substitutions. Secondly, for a graph G and a set S of graphs, we present effective algorithms for extracting minimal multiple layers of G and S which give us stratifying abstractions of G and S, respectively. Finally, we report experimental results obtained by applying our algorithms to both artificial data and drawings of power plants which are real world data. 展开更多
关键词 图表结构 最小多层结构 几何图象数据 GIS
在线阅读 下载PDF
川滇地区人工智能地震预测模型应用
12
作者 孟令媛 胡峰 +7 位作者 臧阳 司旭 闫伟 田雷 赵小艳 张致伟 韩颜颜 王月 《地震研究》 北大核心 2026年第1期43-50,共8页
针对中国地震科学实验场的科学目标和主要科学问题,基于川滇地区地震目录和地球物理观测数据,在对川滇地区进行区域划分并建立图神经网络的基础上,构建了川滇地区地震预测模型。该模型综合考虑约3万条地震目录数据、基于地震目录的3种... 针对中国地震科学实验场的科学目标和主要科学问题,基于川滇地区地震目录和地球物理观测数据,在对川滇地区进行区域划分并建立图神经网络的基础上,构建了川滇地区地震预测模型。该模型综合考虑约3万条地震目录数据、基于地震目录的3种地震活动性参数,以及116台项地球物理观测数据,通过将传统经验预测指标方法与人工智能技术结合,给出了适用于川滇地区的多源异构数据图神经网络地震预测模型,实现了川滇地区不同数据源下短期与中期地震预测功能。模型应用结果显示,在CD2、CD8和CD10区域月尺度预测效果较好,年尺度无震预测有一定对应效果。 展开更多
关键词 中国地震科学实验场 多源异构数据 图神经网络 地震预测模型 川滇地区
在线阅读 下载PDF
股票风险演化分析研究——基于时空图神经网络方法(ST-Graph)
13
作者 郭雨佳 马溪远 《科技促进发展》 2025年第4期332-340,共9页
在全球金融市场不确定性加剧的背景下,股票风险演化分析已成为金融风险管理领域的核心议题。现有方法在时空特征融合和模型可解释性方面存在一定局限性。为此,本研究提出了一种用于股票风险演化分析的时空图神经网络方法(Spatio-Tempora... 在全球金融市场不确定性加剧的背景下,股票风险演化分析已成为金融风险管理领域的核心议题。现有方法在时空特征融合和模型可解释性方面存在一定局限性。为此,本研究提出了一种用于股票风险演化分析的时空图神经网络方法(Spatio-Temporal Graph neutral network,ST-Graph)。该方法通过动态相关性分析构建动态股票特征关联矩阵,利用长短期记忆网络(Long Short-Term Memory,LSTM)模块提取时间依赖特征,并通过图卷积网络聚合空间邻域风险信息。此外,本研究结合沙普利加性解释(Shapley Additive Explanations,SHAP)值动态评估特征贡献,实现了风险特征演化路径可视化。实验结果表明,MSF-Graph在股票风险预测任务中显著优于传统机器学习算法和时序模型,准确率达到87.31%,F1分数达到86.77%。动态时空环分析也证实了模型能够揭示股票风险演化的内在逻辑,从而为金融风险管理提供了一种可靠的解决方案。 展开更多
关键词 股票风险演化 图神经网络 多源时空数据融合 可解释性分析 SHAP值
原文传递
MBGM: A Graph-Mining Tool Based on MapReduce and BSP 被引量:1
14
作者 Zhenjiang Dong Lixia Liu +1 位作者 Bin Wu Yang Liu 《ZTE Communications》 2014年第4期16-22,共7页
This paper proposes an analytical mining tool for big graph data based on MapReduce and bulk synchronous parallel (BSP) com puting model. The tool is named Mapreduce and BSP based Graphmining tool (MBGM). The core... This paper proposes an analytical mining tool for big graph data based on MapReduce and bulk synchronous parallel (BSP) com puting model. The tool is named Mapreduce and BSP based Graphmining tool (MBGM). The core of this mining system are four sets of parallel graphmining algorithms programmed in the BSP parallel model and one set of data extractiontransformationload ing (ETE) algorithms implemented in MapReduce. To invoke these algorithm sets, we designed a workflow engine which optimized for cloud computing. Finally, a welldesigned data management function enables users to view, delete and input data in the Ha doop distributed file system (HDFS). Experiments on artificial data show that the components of graphmining algorithm in MBGM are efficient. 展开更多
关键词 cloud computing parallel algorithms graph data analysis data mining social network analysis
在线阅读 下载PDF
Similarity matching method of power distribution system operating data based on neural information retrieval
15
作者 Kai Xiao Daoxing Li +2 位作者 Pengtian Guo Xiaohui Wang Yong Chen 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期15-25,共11页
Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of dat... Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems. 展开更多
关键词 Neural information retrieval Power distribution graph data Operating section Similarity matching
在线阅读 下载PDF
知识图谱下变电站RPA与数据联动分析
16
作者 李鲁燕 《机械设计与制造工程》 2026年第1期133-138,共6页
针对变电站数据分析需求,提出了知识图谱下变电站RPA与数据联动分析方法。通过半结构化的实体文件和基于字词结合的注意力机制实体抽取模型,建立可推理的知识网络。再进一步将知识图谱集成至RPA系统,运用Petri网三元组实现数据自动化采... 针对变电站数据分析需求,提出了知识图谱下变电站RPA与数据联动分析方法。通过半结构化的实体文件和基于字词结合的注意力机制实体抽取模型,建立可推理的知识网络。再进一步将知识图谱集成至RPA系统,运用Petri网三元组实现数据自动化采集与结构化存储。构建动作库与动作树实现RPA与数据联动分析,通过复杂度计算选择合适的数据库参数,提升了变电站运行的智能化水平和决策效率,形成了具有自学习能力的智能运维体系。实验结果表明,设计方法实现了变电站运行数据特征的提取,且精度保持在97.05%~98.91%,数据处理时数据的吞吐量稳定在40 MB/s以上,说明所提方法具有较高的准确性和实时处理能力。 展开更多
关键词 变电站 机器人流程自动化 数据分析 知识图谱 数据联动分析
在线阅读 下载PDF
知识嵌入增强的对比推荐模型
17
作者 谢涛 葛慧丽 +3 位作者 陈宁 汪晓锋 李延松 黄晓峰 《浙江大学学报(工学版)》 北大核心 2026年第1期90-98,共9页
为了缓解对比推荐模型因过度依赖结构扰动进行数据增强而导致性能下降的问题,提出知识嵌入增强的对比推荐模型,利用知识图谱的嵌入表征来引导对比学习过程,从而实现高效的物品推荐.通过关系感知的知识聚合模块捕获知识图谱中的异质性关... 为了缓解对比推荐模型因过度依赖结构扰动进行数据增强而导致性能下降的问题,提出知识嵌入增强的对比推荐模型,利用知识图谱的嵌入表征来引导对比学习过程,从而实现高效的物品推荐.通过关系感知的知识聚合模块捕获知识图谱中的异质性关系信息以获得知识嵌入,利用图神经网络编码器从用户-项目交互图中获取实体表征;通过基于知识增强的对比推荐模块将知识嵌入融入用户交互图的表征学习中,强化用户和项目嵌入表示,从而提升推荐精度.在企业服务、书籍和新闻3个数据集上进行大量实验,结果表明,所提模型在处理稀疏数据集时具有明显优势.相较于基线模型KGAT、CKAN,所提模型在Recall和NDCG指标上的平均提升幅度超过20%;与性能优越的KGIN、KGCL、MGDCF等对比学习模型相比,实现了平均10%的性能增益,说明所提方法具有全面的性能优势. 展开更多
关键词 推荐系统 知识图谱 对比学习 数据增强 数据稀疏
在线阅读 下载PDF
Spark框架的Graphx算法研究 被引量:4
18
作者 陈虹君 《电脑知识与技术》 2015年第1期75-77,共3页
随着搜索引擎对网页的排名的需要,以及社交网络的兴起,海量关系所产生的大数据需要得到处理。图计算在数据关系的分析上发挥着其巨大的潜能。Spark框架是Hadoop大数据平台上整合能力强,处理速度快的内存模型框架,它的图处理Graphx也得... 随着搜索引擎对网页的排名的需要,以及社交网络的兴起,海量关系所产生的大数据需要得到处理。图计算在数据关系的分析上发挥着其巨大的潜能。Spark框架是Hadoop大数据平台上整合能力强,处理速度快的内存模型框架,它的图处理Graphx也得到快速发展。该文先介绍Spark框架与Graphx的关系与发展。接着分析了Graphx中的三个典型的算法。最后总结了Graphx的场景应用。 展开更多
关键词 大数据 HADOOP SPARK 图计算 graphx PAGE RANK
在线阅读 下载PDF
Data-SSI与图论聚类结合识别果树固有频率 被引量:5
19
作者 许林云 韩元顺 +2 位作者 陈青 姜东 金晶 《农业工程学报》 EI CAS CSCD 北大核心 2021年第15期136-145,共10页
果树的固有频率是林果振动采收机械设计的重要依据之一。为有效识别果树的固有频率,该研究提出了基于数据驱动随机子空间Data-SSI(Data-driven Stochastic Subspace Identification)法与图论聚类稳定图相结合、仅以果树的输出响应信号... 果树的固有频率是林果振动采收机械设计的重要依据之一。为有效识别果树的固有频率,该研究提出了基于数据驱动随机子空间Data-SSI(Data-driven Stochastic Subspace Identification)法与图论聚类稳定图相结合、仅以果树的输出响应信号对果树进行固有频率识别的方法,以尽量减少人为主观因素的影响。将该方法用于一棵室内小型银杏树和一棵室外较大银杏树固有频率的识别并与冲击力锤频谱测试结果进行对比分析。结果表明,室内小型果树在随机激励下采用本文方法识别结果与频谱试验结果最大相对误差为4.17%;室外大型果树在环境激励下所提方法识别结果与频谱试验结果平均相对误差为2.88%,最大相对误差为6.02%。本文方法对仅基于输出响应信号的果树固有频率识别具有一定可行性,可为果树智能化共振采收时快速准确确定共振频率提供参考。 展开更多
关键词 振动 收获 固有频率 data-SSI法 图论聚类
在线阅读 下载PDF
基于多特征融合的GraphHeat-ChebNet隧道形变预测模型 被引量:1
20
作者 熊安萍 李梦凡 龙林波 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第1期164-175,共12页
对隧道的形变进行预测是隧道结构异常检测的内容之一。为了充分挖掘形变特征的时空关联性,针对隧道内衬多个断面的形变同时预测,提出一种基于多特征融合的GraphHeat-ChebNet隧道形变预测模型。所提模型中利用GraphHeat和ChebNet这2种图... 对隧道的形变进行预测是隧道结构异常检测的内容之一。为了充分挖掘形变特征的时空关联性,针对隧道内衬多个断面的形变同时预测,提出一种基于多特征融合的GraphHeat-ChebNet隧道形变预测模型。所提模型中利用GraphHeat和ChebNet这2种图卷积网络(graph convolution net,GCN)分别提取特征信号的低频和高频部分,并获取形变特征的空间关联性,ConvGRUs网络用于提取特征在时间上的关联性,通过三阶段融合方法保留挖掘的信息。为了解决实验数据在时间维度上不充足的问题,引入双层滑动窗口机制。此外,所提模型与其他模型或算法在不同数据集上实验比较,衡量一天和两天预测值的误差指标优于其他模型,而且对大部分节点预测的误差较低。说明模型受样本节点数影响较小,能较好地预测一天和两天的形变,模型学习特征与时空模式的能力较强,泛化性较好。 展开更多
关键词 隧道形变 预测模型 融合时空数据 滑动窗口 图卷积网络(GCN)
在线阅读 下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部