期刊文献+
共找到2,289篇文章
< 1 2 115 >
每页显示 20 50 100
A Grid-based Graph Data Model for Pedestrian Route Analysis in a Micro-spatial Environment
1
作者 Yi-Quan Song Lei Niu +1 位作者 Long He Rui Wang 《International Journal of Automation and computing》 EI CSCD 2016年第3期296-304,共9页
Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accur... Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accurately, the concept of a grid is presented, and grid-based methods for modeling geospatial objects are described. The semantic constitution of a building environment and the methods for modeling rooms, corridors, and staircases with grid objects are described. Based on the topology relationship between grid objects, a grid-based graph for a building environment is presented, and the corresponding route algorithm for pedestrians is proposed. The main advantages of the graph model proposed in this paper are as follows: 1) consideration of both semantic and geometric information, 2) consideration of the need for accurate geometric representation of the micro-spatial environment and the efficiency of pedestrian route analysis, 3) applicability of the graph model to route analysis in both static and dynamic environments, and 4) ability of the multi-hierarchical route analysis to integrate the multiple levels of pedestrian decision characteristics, from the high to the low, to determine the optimal path. 展开更多
关键词 graph data model route analysis PEDESTRIAN micro-spatiM environment building.
原文传递
股票风险演化分析研究——基于时空图神经网络方法(ST-Graph)
2
作者 郭雨佳 马溪远 《科技促进发展》 2025年第4期332-340,共9页
在全球金融市场不确定性加剧的背景下,股票风险演化分析已成为金融风险管理领域的核心议题。现有方法在时空特征融合和模型可解释性方面存在一定局限性。为此,本研究提出了一种用于股票风险演化分析的时空图神经网络方法(Spatio-Tempora... 在全球金融市场不确定性加剧的背景下,股票风险演化分析已成为金融风险管理领域的核心议题。现有方法在时空特征融合和模型可解释性方面存在一定局限性。为此,本研究提出了一种用于股票风险演化分析的时空图神经网络方法(Spatio-Temporal Graph neutral network,ST-Graph)。该方法通过动态相关性分析构建动态股票特征关联矩阵,利用长短期记忆网络(Long Short-Term Memory,LSTM)模块提取时间依赖特征,并通过图卷积网络聚合空间邻域风险信息。此外,本研究结合沙普利加性解释(Shapley Additive Explanations,SHAP)值动态评估特征贡献,实现了风险特征演化路径可视化。实验结果表明,MSF-Graph在股票风险预测任务中显著优于传统机器学习算法和时序模型,准确率达到87.31%,F1分数达到86.77%。动态时空环分析也证实了模型能够揭示股票风险演化的内在逻辑,从而为金融风险管理提供了一种可靠的解决方案。 展开更多
关键词 股票风险演化 图神经网络 多源时空数据融合 可解释性分析 SHAP值
原文传递
Modeling and application of marketing and distribution data based on graph computing
3
作者 Kai Xiao Daoxing Li +1 位作者 Xiaohui Wang Pengtian Guo 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期448-460,共13页
Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to dist... Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to distribution grids;this,however,increases the complexity of the information structure of marketing and distribution businesses.The existing unified data model and the coordinated application of marketing and distribution suffer from various drawbacks.As a solution,this paper presents a data model of"one graph of marketing and distribution"and a framework for graph computing,by analyzing the current trends of business and data in the marketing and distribution fields and using graph data theory.Specifically,this work aims to determine the correlation between distribution transformers and marketing users,which is crucial for elucidating the connection between marketing and distribution.In this manner,a novel identification algorithm is proposed based on the collected data for marketing and distribution.Lastly,a forecasting application is developed based on the proposed algorithm to realize the coordinated prediction and consumption of distributed photovoltaic power generation and distribution loads.Furthermore,an operation and maintenance(O&M)knowledge graph reasoning application is developed to improve the intelligent O&M ability of marketing and distribution equipment. 展开更多
关键词 Marketing and distribution connection graph data graph computing Knowledge graph data model
在线阅读 下载PDF
Efficient Publication of Distributed and Overlapping Graph Data Under Differential Privacy
4
作者 Xu Zheng Lizong Zhang +1 位作者 Kaiyang Li Xi Zeng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第2期235-243,共9页
Graph data publication has been considered as an important step for data analysis and mining.Graph data,which provide knowledge on interactions among entities,can be locally generated and held by distributed data owne... Graph data publication has been considered as an important step for data analysis and mining.Graph data,which provide knowledge on interactions among entities,can be locally generated and held by distributed data owners.These data are usually sensitive and private,because they may be related to owners’personal activities and can be hijacked by adversaries to conduct inference attacks.Current solutions either consider private graph data as centralized contents or disregard the overlapping of graphs in distributed manners.Therefore,this work proposes a novel framework for distributed graph publication.In this framework,differential privacy is applied to justify the safety of the published contents.It includes four phases,i.e.,graph combination,plan construction sharing,data perturbation,and graph reconstruction.The published graph selection is guided by one data coordinator,and each graph is perturbed carefully with the Laplace mechanism.The problem of graph selection is formulated and proven to be NP-complete.Then,a heuristic algorithm is proposed for selection.The correctness of the combined graph and the differential privacy on all edges are analyzed.This study also discusses a scenario without a data coordinator and proposes some insights into graph publication. 展开更多
关键词 graph data distributed data publication differential privacy
原文传递
A Secure Microgrid Data Storage Strategy with Directed Acyclic Graph Consensus Mechanism
5
作者 Jian Shang Runmin Guan Wei Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2609-2626,共18页
The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to ... The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks. 展开更多
关键词 MICROGRID data security storage node trust degree directed acyclic graph data structure consensus mechanism secure multi-party computing blockchain
在线阅读 下载PDF
Constructing Three-Dimension Space Graph for Outlier Detection Algorithms in Data Mining 被引量:1
6
作者 ZHANG Jing 1,2 , SUN Zhi-hui 1 1.Department of Computer Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China 2.Department of Electricity and Information Engineering, Jiangsu University, Zhenjiang 212001, Jiangsu, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期585-589,共5页
Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional sp... Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery. 展开更多
关键词 OUTLIER DETECTION three-dimensional space graph data mining
在线阅读 下载PDF
Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model 被引量:1
7
作者 FANG Chcng LIU Jun LEI Zhenming 《China Communications》 SCIE CSCD 2014年第12期13-25,共13页
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap... With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods. 展开更多
关键词 cloud computing massive data graph model web usage mining
在线阅读 下载PDF
Graph Regularized L_p Smooth Non-negative Matrix Factorization for Data Representation 被引量:10
8
作者 Chengcai Leng Hai Zhang +2 位作者 Guorong Cai Irene Cheng Anup Basu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第2期584-595,共12页
This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ... This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods. 展开更多
关键词 data clustering dimensionality reduction graph REGULARIZATION LP SMOOTH non-negative matrix factorization(SNMF)
在线阅读 下载PDF
A Graph Drawing Algorithm for Visualizing Multivariate Categorical Data
9
作者 HUANG Jingwei HUANG Jie 《Wuhan University Journal of Natural Sciences》 CAS 2007年第2期239-242,共4页
In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify pat... In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify patterns, trends and relationship within the data. A mathematical model for the graph layout problem is deduced and a spectral graph drawing algorithm for visualizing multivariate categorical data is proposed. The experiments show that the drawings by the algorithm well capture the structures of multivariate categorical data and the computing speed is fast. 展开更多
关键词 multivariate categorical data graph graph drawing ALGORITHMS
在线阅读 下载PDF
A graph-based sliding window multi-join over data stream 被引量:1
10
作者 ZHANG Liang Byeong-Seob You +2 位作者 GE Jun-wei LIU Zhao-hong Hae-Young Bae 《重庆邮电大学学报(自然科学版)》 2007年第3期362-366,共5页
Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used fo... Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment. 展开更多
关键词 数据流 查询优化 图论 可调整窗口
在线阅读 下载PDF
Decomposition of Graphs Representing the Contents of Multimedia Data
11
作者 Hochin Teruhisa 《通讯和计算机(中英文版)》 2010年第4期43-49,共7页
关键词 多媒体内容 分解图 数据模型 多媒体数据 递归调用 火焰传播 实例 递归图
在线阅读 下载PDF
面向临床的药物关系知识图谱设计与应用 被引量:2
12
作者 彭坤 冷金昌 +3 位作者 吴欢 肖瑶 王金玲 孙晓玮 《中国数字医学》 2025年第1期97-105,共9页
为提高临床用药的有效性和安全性,本研究综合运用知识结构化抽取、知识存储、知识融合等技术,整合了多源异构性的临床前药学研究数据,构建了药物-药物相互作用(DDI)知识图谱。该知识图谱支持基于本体公理和图结构规则的知识推理业务,可... 为提高临床用药的有效性和安全性,本研究综合运用知识结构化抽取、知识存储、知识融合等技术,整合了多源异构性的临床前药学研究数据,构建了药物-药物相互作用(DDI)知识图谱。该知识图谱支持基于本体公理和图结构规则的知识推理业务,可辅助挖掘深层的DDI关系,并推测尚未经研究证实的潜在DDI关系。基于Neo4j平台搭建了药学知识图谱应用系统,实现了可视化的DDI关联知识查询和DDI风险等级预警,可帮助医生快速、准确、便捷地获取DDI知识,为精准用药提供有效的数据支撑。该系统可与医生工作站相结合,是对药学知识图谱应用于临床的技术探索。 展开更多
关键词 药物-药物相互作用 知识图谱 药研数据 药物不良反应
暂未订购
Spatiotemporal Data Graph Modeling and Exploration of Application Scenarios in “Power Grid One Graph” 被引量:5
13
作者 Peng Li Zhen Dai +4 位作者 Yachen Tang Guangyi Liu Jiaxuan Hou Qinyu Feng Quanchen Lin 《CSEE Journal of Power and Energy Systems》 2025年第2期538-551,共14页
By modeling the spatiotemporal data of the power grid, it is possible to better understand its operational status, identify potential issues and risks, and take timely measures to adjust and optimize the system. Compa... By modeling the spatiotemporal data of the power grid, it is possible to better understand its operational status, identify potential issues and risks, and take timely measures to adjust and optimize the system. Compared to the bus-branch model, the node-breaker model provides higher granularity in describing grid components and can dynamically reflect changes in equipment status, thus improving the efficiency of grid dispatching and operation. This paper proposes a spatiotemporal data modeling method based on a graph database. It elaborates on constructing graph nodes, graph ontology models, and graph entity models from grid dispatch data, describing the construction of the spatiotemporal node-breaker graph model and the transformation to the bus-branch model. Subsequently, by integrating spatiotemporal data attributes into the pre-built static grid graph model, a spatiotemporal evolving graph of the power grid is constructed. Furthermore, the concept of the “Power Grid One Graph” and its requirements in modern power systems are elucidated. Leveraging the constructed spatiotemporal node-breaker graph model and graph computing technology, the paper explores the feasibility of grid situational awareness. Finally, typical applications in an operational provincial grid are showcased, and potential scenarios of the proposed spatiotemporal graph model are discussed. 展开更多
关键词 “Power Grid One graph graph data modeling situational awareness spatiotemporal evolving graph spatiotemporal node-breaker graph model
原文传递
免疫异常数据的金属回流双极直流配电线路状态估计保护方法 被引量:1
14
作者 曾琦 曾维刚 +4 位作者 廖建权 王少雄 郑宗生 王渝红 周念成 《电力自动化设备》 北大核心 2025年第1期16-24,共9页
实际工程中的量测可能存在异常数据干扰,增加保护误动的风险。为此,基于模型匹配的思想,提出一种免疫异常数据的直流配电线路状态估计保护方法。考虑金属回流双极直流线路的极间耦合,建立线路的精细化等值模型。据此得到系统的量测方程... 实际工程中的量测可能存在异常数据干扰,增加保护误动的风险。为此,基于模型匹配的思想,提出一种免疫异常数据的直流配电线路状态估计保护方法。考虑金属回流双极直流线路的极间耦合,建立线路的精细化等值模型。据此得到系统的量测方程,并根据二次积分法将其离散化以便于求解。对于可能存在的异常数据问题,提出基于窗口图傅里叶变换对数据进行预处理,将数据视为图信号并赋予“频率”的概念,通过提取低频信号达到剔除随机脉冲等高频异常数据的目的。基于递推最小二乘算法对预处理后的状态估计模型进行求解,根据估计模型和实测模型的匹配度构建保护判据,实现区内和区外故障的识别。仿真结果表明,该方法可快速、准确识别区内故障,并有效避免异常数据干扰,同时具有较强的耐高阻、抗通信延时等性能。 展开更多
关键词 直流配电 线路保护 异常数据 图傅里叶变换 状态估计 递推最小二乘
在线阅读 下载PDF
古籍文献通用知识模型研究与设计 被引量:2
15
作者 陈涛 赵晓飞 +1 位作者 杨鑫 林立信 《信息资源管理学报》 2025年第1期139-153,共15页
我国拥有卷帙浩繁的古籍文献,传统的古籍组织与管理方式实现了古籍资源从“藏”到“用”的转变,但“裸资源”越来越难满足数智时代的古籍利用需要。文章考察分析了古籍文献知识组织可复用本体模型,并梳理了古籍文献知识建模视角与思路,... 我国拥有卷帙浩繁的古籍文献,传统的古籍组织与管理方式实现了古籍资源从“藏”到“用”的转变,但“裸资源”越来越难满足数智时代的古籍利用需要。文章考察分析了古籍文献知识组织可复用本体模型,并梳理了古籍文献知识建模视角与思路,从形式特征和内容特征两个维度提出了古籍文献通用知识模型五层框架结构。为验证模型可用性,文章以《永乐大典》“湖”字册为例,构建关联数据集,探索融合关联数据的古籍文献知识图谱,实现了知识聚合与知识发现。本文立足古籍整体,构建了古籍文献通用知识组织模型,为古籍知识的关联呈现、传播共享和智慧应用提供了可选路径。 展开更多
关键词 古籍 本体构建 知识图谱 关联数据 永乐大典
在线阅读 下载PDF
面向设备运维的人机物三元融合知识图谱构建方法
16
作者 杨波 申小玉 +2 位作者 王时龙 何彦 杜卡泽 《机械工程学报》 北大核心 2025年第17期215-232,共18页
设备运维是保障生产正常进行的重要基础,现有的智能运维技术主要依赖信号分析、数据挖掘或专家知识重用。然而,随着设备自动化和集成化程度的提高,其各类运行异常的表征信号、多源致因和维护方案之间的关系呈现出更高的模糊性和复杂性,... 设备运维是保障生产正常进行的重要基础,现有的智能运维技术主要依赖信号分析、数据挖掘或专家知识重用。然而,随着设备自动化和集成化程度的提高,其各类运行异常的表征信号、多源致因和维护方案之间的关系呈现出更高的模糊性和复杂性,将信号、数据和知识进行融合分析是提高设备运维精度和效率的关键。为此,采用知识图谱技术将“人”、“机”、“物”三元数据融合来支撑复杂设备的异常诊断和维护方案决策,提高运维智能化程度、避免决策片面性。首先,对设备运维领域人机物三元数据进行定义并完成三元本体设计,指导知识图数据层的构建。其次,对人机物三元数据进行预处理并搭建了统一混合注意力机制联合抽取模型(Joint entity and relation extraction model with mixed attention,MAREL)从三元数据中自动抽取知识,并建立三元知识之间的关联关系,以此实现人机物三元数据的融合;MAREL模型将任务拆解为两个关联的解码模块来解决实体重叠问题,利用混合注意力机制增强模型的长文本处理能力,在中文数据集SKE上的测试证明MAREL具有优异的性能。最后,以某汽车生产机器人设备运维人机物知识图谱的构建为例,验证了所提方法的有效性,结果表明知识图谱能够将人机物三元数据有效融合,为工业设备的智能运维提供支持。 展开更多
关键词 设备运维 人机物 知识图谱 数据融合 本体 联合抽取
原文传递
基于分层图注意力的以太坊钓鱼诈骗识别方法
17
作者 陈乔松 张星宇 +2 位作者 尹忠钰 邓欣 王进 《江苏大学学报(自然科学版)》 北大核心 2025年第6期685-691,共7页
针对传统以太坊钓鱼诈骗识别分类未考虑子图间重要性、计算显存开销大的问题,使用图注意力技术来挖掘账户地址的行为模式信息,提出了分层图注意力框架来处理子图分类任务.构造分层图注意力池化编码器,利用节点级编码器提取子图内部节点... 针对传统以太坊钓鱼诈骗识别分类未考虑子图间重要性、计算显存开销大的问题,使用图注意力技术来挖掘账户地址的行为模式信息,提出了分层图注意力框架来处理子图分类任务.构造分层图注意力池化编码器,利用节点级编码器提取子图内部节点重要性,子图级编码器提取子图间的重要性,挖掘了子图内、子图间的潜在关联.结合图对比学习技术进行联合训练,将对比学习损失作为正则项以缓解标签稀疏,以改善子图分类的效果.在以太坊真实数据集上进行对比试验和消融试验,以F_1分数作为评价指标,并进行参数分析.结果表明:新方法在真实数据集上的F_1分数最高提升了1.7百分点,优于GCN、GraphSage、GAT等经典方法,显存开销小于其他节点分类方法. 展开更多
关键词 以太坊 钓鱼诈骗 账户身份推断 图神经网络 对比学习 子图分类 图数据增强
在线阅读 下载PDF
交通事故致因知识图谱构建及风险因素挖掘 被引量:1
18
作者 王占中 张书源 +2 位作者 杨萌 兰若冰 吴智豪 《同济大学学报(自然科学版)》 北大核心 2025年第4期611-618,共8页
利用交通事故调查报告中的数据,构建交通事故致因知识图谱并分析风险因素。首先,基于微调通用信息抽取统一框架预训练模型,构建适用于低数据量的交通事故致因命名实体识别模型,并生成实体集;其次,通过结构化处理和本体构建,利用图数据库... 利用交通事故调查报告中的数据,构建交通事故致因知识图谱并分析风险因素。首先,基于微调通用信息抽取统一框架预训练模型,构建适用于低数据量的交通事故致因命名实体识别模型,并生成实体集;其次,通过结构化处理和本体构建,利用图数据库Neo4j存储交通事故致因知识图谱,实现可视化;再次,基于专家经验和预训练语言文本分类模型,对交通事故致因实体进行标准化;最后,构建基于交通事故致因图谱的风险因素分析方法,通过分析标准化实体的类型分布和度分布,挖掘各因素对事故的触发特征与贡献,并进行关联规则挖掘。这些方法和分析结果提供了对历史事故风险因素的深入理解与探索。 展开更多
关键词 交通运输 知识图谱 致因分析 数据挖掘 命名实体识别
在线阅读 下载PDF
护理领域知识图谱研究进展
19
作者 何美娜 胡慧 +1 位作者 毛树松 常凯 《护理研究》 北大核心 2025年第8期1402-1408,共7页
概述了知识图谱的基本原理、护理领域知识图谱的特征及构建方法,重点介绍了护理领域知识图谱的应用场景,并结合知识模型、术语规范、数据获取、资源合作等方面提出研究建议,为更好地运用知识图谱推进护理学发展提供参考。
关键词 知识图谱 护理 数据 综述
暂未订购
Extracting multiple layers from data having graph structures
20
作者 ITOKAWA Yuko UCHIDA Tomoyuki NAKAMURA Yasuaki 《重庆邮电学院学报(自然科学版)》 2004年第5期149-155,共7页
Much data such as geometric image data and drawings have graph structures. Such data are called graph structured data. In order to manage efficiently such graph structured data, we need to analyze and abstract graph s... Much data such as geometric image data and drawings have graph structures. Such data are called graph structured data. In order to manage efficiently such graph structured data, we need to analyze and abstract graph structures of such data. The purpose of this paper is to find knowledge representations which indicate plural abstractions of graph structured data. Firstly, we introduce a term graph as a graph pattern having structural variables, and a substitution over term graphs which is graph rewriting system. Next, for a graph G, we define a multiple layer ( g,(θ 1,…,θ k )) of G as a pair of a term graph g and a list of k substitutions θ 1,…,θ k such that G can be obtained from g by applying substitutions θ 1,…,θ k to g. In the same way, for a set S of graphs, we also define a multiple layer for S as a pair ( D,Θ ) of a set D of term graphs and a list Θ of substitutions. Secondly, for a graph G and a set S of graphs, we present effective algorithms for extracting minimal multiple layers of G and S which give us stratifying abstractions of G and S, respectively. Finally, we report experimental results obtained by applying our algorithms to both artificial data and drawings of power plants which are real world data. 展开更多
关键词 图表结构 最小多层结构 几何图象数据 GIS
在线阅读 下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部