期刊文献+
共找到181篇文章
< 1 2 10 >
每页显示 20 50 100
Spectral graph convolution networks for microbialite lithology identification based on conventional well logs
1
作者 Ke-Ran Li Jin-Min Song +9 位作者 Han Wang Hai-Jun Yan Shu-Gen Liu Yang Lan Xin Jin Jia-Xin Ren Ling-Li Zhao Li-Zhou Tian Hao-Shuang Deng Wei Chen 《Petroleum Science》 2025年第4期1513-1533,共21页
Machine learning algorithms are widely used to interpret well logging data.To enhance the algorithms'robustness,shuffling the well logging data is an unavoidable feature engineering before training models.However,... Machine learning algorithms are widely used to interpret well logging data.To enhance the algorithms'robustness,shuffling the well logging data is an unavoidable feature engineering before training models.However,latent information stored between different well logging types and depth is destroyed during the shuffle.To investigate the influence of latent information,this study implements graph convolution networks(GCNs),long-short temporal memory models,recurrent neural networks,temporal convolution networks,and two artificial neural networks to predict the microbial lithology in the fourth member of the Dengying Formation,Moxi gas field,central Sichuan Basin.Results indicate that the GCN model outperforms other models.The accuracy,F1-score,and area under curve of the GCN model are 0.90,0.90,and 0.95,respectively.Experimental results indicate that the time-series data facilitates lithology prediction and helps determine lithological fluctuations in the vertical direction.All types of logs from the spectral in the GCN model and also facilitates lithology identification.Only on condition combined with latent information,the GCN model reaches excellent microbialite classification resolution at the centimeter scale.Ultimately,the two actual cases show tricks for using GCN models to predict potential microbialite in other formations and areas,proving that the GCN model can be adopted in the industry. 展开更多
关键词 graph convolution network Mirobialite Lithology forecasting Well log
原文传递
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
2
作者 Sang-min Lee Namgi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第2期1897-1914,共18页
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ... Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets. 展开更多
关键词 Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems
在线阅读 下载PDF
Recommendation System Based on Perceptron and Graph Convolution Network
3
作者 Zuozheng Lian Yongchao Yin Haizhen Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期3939-3954,共16页
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio... The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms. 展开更多
关键词 Recommendation system graph convolution network attention mechanism multi-layer perceptron
在线阅读 下载PDF
Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
4
作者 Yunchang Liu Fei Wan Chengwu Liang 《Computers, Materials & Continua》 SCIE EI 2024年第3期4343-4361,共19页
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of... Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms. 展开更多
关键词 Intelligent transportation graph convolutional network traffic flow DTW algorithm attention mechanism
在线阅读 下载PDF
Semantic-aware graph convolution network on multi-hop paths for link prediction 被引量:1
5
作者 彭斐 CHEN Shudong +2 位作者 QI Donglin YU Yong TONG Da 《High Technology Letters》 EI CAS 2023年第3期269-278,共10页
Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack... Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack transparency of model prediction principles. In this paper,a new graph convolutional network path semantic-aware graph convolution network(PSGCN) is proposed to achieve modeling the semantic information of multi-hop paths. PSGCN first uses a random walk strategy to obtain all-hop paths in KGs,then captures the semantics of the paths by Word2Sec and long shortterm memory(LSTM) models,and finally converts them into a potential representation for the graph convolution network(GCN) messaging process. PSGCN combines path-based inference methods and graph neural networks to achieve better interpretability and scalability. In addition,to ensure the robustness of the model,the value of the path thresholdKis experimented on the FB15K-237 and WN18RR datasets,and the final results prove the effectiveness of the model. 展开更多
关键词 knowledge graph(KG) link prediction graph convolution network(GCN) knowledge graph completion(KGC) multi-hop paths semantic information
在线阅读 下载PDF
Skeleton Split Strategies for Spatial Temporal Graph Convolution Networks
6
作者 Motasem S.Alsawadi Miguel Rio 《Computers, Materials & Continua》 SCIE EI 2022年第6期4643-4658,共16页
Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the ... Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events.A skeleton representation of the human body has been proven to be effective for this task.The skeletons are presented in graphs form-like.However,the topology of a graph is not structured like Euclideanbased data.Therefore,a new set of methods to perform the convolution operation upon the skeleton graph is proposed.Our proposal is based on the Spatial Temporal-Graph Convolutional Network(ST-GCN)framework.In this study,we proposed an improved set of label mapping methods for the ST-GCN framework.We introduce three split techniques(full distance split,connection split,and index split)as an alternative approach for the convolution operation.The experiments presented in this study have been trained using two benchmark datasets:NTU-RGB+D and Kinetics to evaluate the performance.Our results indicate that our split techniques outperform the previous partition strategies and aremore stable during training without using the edge importance weighting additional training parameter.Therefore,our proposal can provide a more realistic solution for real-time applications centred on daily living recognition systems activities for indoor environments. 展开更多
关键词 Skeleton split strategies spatial temporal graph convolutional neural networks skeleton joints action recognition
在线阅读 下载PDF
Residual-enhanced graph convolutional networks with hypersphere mapping for anomaly detection in attributed networks
7
作者 Wasim Khan Afsaruddin Mohd +3 位作者 Mohammad Suaib Mohammad Ishrat Anwar Ahamed Shaikh Syed Mohd Faisal 《Data Science and Management》 2025年第2期137-146,共10页
In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study in... In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study introduces an innovative approach that synergizes the strengths of graph convolutional networks with advanced deep residual learning and a unique residual-based attention mechanism,thereby creating a more nuanced and efficient method for anomaly detection in complex networks.The heart of our model lies in the integration of graph convolutional networks that capture complex structural relationships within the network data.This is further bolstered by deep residual learning,which is employed to model intricate nonlinear connections directly from input data.A pivotal innovation in our approach is the incorporation of a residual-based attention mech-anism.This mechanism dynamically adjusts the importance of nodes based on their residual information,thereby significantly enhancing the sensitivity of the model to subtle anomalies.Furthermore,we introduce a novel hypersphere mapping technique in the latent space to distinctly separate normal and anomalous data.This mapping is the key to our model’s ability to pinpoint anomalies with greater precision.An extensive experimental setup was used to validate the efficacy of the proposed model.Using attributed social network datasets,we demonstrate that our model not only competes with but also surpasses existing state-of-the-art methods in anomaly detection.The results show the exceptional capability of our model to handle the multifaceted nature of real-world networks. 展开更多
关键词 Anomaly detection Deep learning Hypersphere learning Residual modeling graph convolution network Attention mechanism
在线阅读 下载PDF
AG-GCN: Vehicle Re-Identification Based on Attention-Guided Graph Convolutional Network
8
作者 Ya-Jie Sun Li-Wei Qiao Sai Ji 《Computers, Materials & Continua》 2025年第7期1769-1785,共17页
Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-c... Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-class similarity in the collected vehicle images,which increases the complexity of re-identification tasks.To tackle these challenges,this study proposes AG-GCN(Attention-Guided Graph Convolutional Network),a novel framework integrating several pivotal components.Initially,AG-GCN embeds a lightweight attention module within the ResNet-50 structure to learn feature weights automatically,thereby improving the representation of vehicle features globally by highlighting salient features and suppressing extraneous ones.Moreover,AG-GCN adopts a graph-based structure to encapsulate deep local features.A graph convolutional network then amalgamates these features to understand the relationships among vehicle-related characteristics.Subsequently,we amalgamate feature maps from both the attention and graph-based branches for a more comprehensive representation of vehicle features.The framework then gauges feature similarities and ranks them,thus enhancing the accuracy of vehicle re-identification.Comprehensive qualitative and quantitative analyses on two publicly available datasets verify the efficacy of AG-GCN in addressing intra-class and inter-class variability issues. 展开更多
关键词 Vehicle re-identification a lightweight attention module global features local features graph convolution network
在线阅读 下载PDF
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
9
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
10
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
Self-FAGCFN:Graph-Convolution Fusion Network Based on Feature Fusion and Self-Supervised Feature Alignment for Pneumonia and Tuberculosis Diagnosis
11
作者 Junding Sun Wenhao Tang +5 位作者 Lei Zhao Chaosheng Tang Xiaosheng Wu Zhaozhao Xu Bin Pu Yudong Zhang 《Journal of Bionic Engineering》 2025年第4期2012-2029,共18页
Feature fusion is an important technique in medical image classification that can improve diagnostic accuracy by integrating complementary information from multiple sources.Recently,Deep Learning(DL)has been widely us... Feature fusion is an important technique in medical image classification that can improve diagnostic accuracy by integrating complementary information from multiple sources.Recently,Deep Learning(DL)has been widely used in pulmonary disease diagnosis,such as pneumonia and tuberculosis.However,traditional feature fusion methods often suffer from feature disparity,information loss,redundancy,and increased complexity,hindering the further extension of DL algorithms.To solve this problem,we propose a Graph-Convolution Fusion Network with Self-Supervised Feature Alignment(Self-FAGCFN)to address the limitations of traditional feature fusion methods in deep learning-based medical image classification for respiratory diseases such as pneumonia and tuberculosis.The network integrates Convolutional Neural Networks(CNNs)for robust feature extraction from two-dimensional grid structures and Graph Convolutional Networks(GCNs)within a Graph Neural Network branch to capture features based on graph structure,focusing on significant node representations.Additionally,an Attention-Embedding Ensemble Block is included to capture critical features from GCN outputs.To ensure effective feature alignment between pre-and post-fusion stages,we introduce a feature alignment loss that minimizes disparities.Moreover,to address the limitations of proposed methods,such as inappropriate centroid discrepancies during feature alignment and class imbalance in the dataset,we develop a Feature-Centroid Fusion(FCF)strategy and a Multi-Level Feature-Centroid Update(MLFCU)algorithm,respectively.Extensive experiments on public datasets LungVision and Chest-Xray demonstrate that the Self-FAGCFN model significantly outperforms existing methods in diagnosing pneumonia and tuberculosis,highlighting its potential for practical medical applications. 展开更多
关键词 Feature fusion Self-supervised feature alignment convolutional neural networks graph convolutional networks Class imbalance Feature-centroid fusion
在线阅读 下载PDF
A Hyperspectral Image Classification Based on Spectral Band Graph Convolutional and Attention⁃Enhanced CNN Joint Network
12
作者 XU Chenjie LI Dan KONG Fanqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期102-120,共19页
Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the... Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the spectral band graph convolutional and attention-enhanced CNN joint network(SGCCN),a novel approach that harnesses the power of spectral band graph convolutions for capturing long-range relationships,utilizes local perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention mechanism to enhance feature extraction.The SGCCN integrates spectral and spatial features through a self-attention fusion network,significantly improving classification accuracy and efficiency.The proposed method outperforms existing techniques,demonstrating its effectiveness in handling the challenges associated with HSI data. 展开更多
关键词 hyperspectral classification spectral band graph convolutional network attention-enhance convolutional network dynamic attention feature extraction feature fusion
在线阅读 下载PDF
Hand-aware graph convolution network for skeleton-based sign language recognition
13
作者 Juan Song Huixuechun Wang +3 位作者 Jianan Li Jian Zheng Zhifu Zhao Qingshan Li 《Journal of Information and Intelligence》 2025年第1期36-50,共15页
Skeleton-based sign language recognition(SLR)is a challenging research area mainly due to the fast and complex hand movement.Currently,graph convolution networks(GCNs)have been employed in skeleton-based SLR and achie... Skeleton-based sign language recognition(SLR)is a challenging research area mainly due to the fast and complex hand movement.Currently,graph convolution networks(GCNs)have been employed in skeleton-based SLR and achieved remarkable performance.However,existing GCN-based SLR methods suffer from a lack of explicit attention to hand topology which plays an important role in the sign language representation.To address this issue,we propose a novel hand-aware graph convolution network(HA-GCN)to focus on hand topological relationships of skeleton graph.Specifically,a hand-aware graph convolution layer is designed to capture both global body and local hand information,in which two sub-graphs are defined and incorporated to represent hand topology information.In addition,in order to eliminate the over-fitting problem,an adaptive DropGraph is designed in construction of hand-aware graph convolution block to remove the spatial and temporal redundancy in the sign language representation.With the aim to further improve the performance,the joints information,bones,together with their motion information are simultaneously modeled in a multi-stream framework.Extensive experiments on the two open-source datasets,AUTSL and INCLUDE,demonstrate that our proposed algorithm outperforms the state-of-the-art with a significant margin.Our code is available at https://github.com/snorlaxse/HA-SLR-GCN. 展开更多
关键词 Sign language recognition graph convolutional network Hand-aware graphs Skeleton data Multi-stream fusion
原文传递
Container cluster placement in edge computing based on reinforcement learning incorporating graph convolutional networks scheme
14
作者 Zhuo Chen Bowen Zhu Chuan Zhou 《Digital Communications and Networks》 2025年第1期60-70,共11页
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilizat... Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods. 展开更多
关键词 Edge computing network virtualization Container cluster Deep reinforcement learning graph convolutional network
在线阅读 下载PDF
Dual-channel graph convolutional network with multi-order information fusion for skeleton-based action recognition
15
作者 JIANG Tao HU Zhentao +2 位作者 WANG Kaige QIU Qian REN Xing 《High Technology Letters》 2025年第3期257-265,共9页
Skeleton-based human action recognition focuses on identifying actions from dynamic skeletal data,which contains both temporal and spatial characteristics.However,this approach faces chal-lenges such as viewpoint vari... Skeleton-based human action recognition focuses on identifying actions from dynamic skeletal data,which contains both temporal and spatial characteristics.However,this approach faces chal-lenges such as viewpoint variations,low recognition accuracy,and high model complexity.Skeleton-based graph convolutional network(GCN)generally outperform other deep learning methods in rec-ognition accuracy.However,they often underutilize temporal features and suffer from high model complexity,leading to increased training and validation costs,especially on large-scale datasets.This paper proposes a dual-channel graph convolutional network with multi-order information fusion(DM-AGCN)for human action recognition.The network integrates high frame rate skeleton chan-nels to capture action dynamics and low frame rate channels to preserve static semantic information,effectively balancing temporal and spatial features.This dual-channel architecture allows for separate processing of temporal and spatial information.Additionally,DM-AGCN extracts joint keypoints and bidirectional bone vectors from skeleton sequences,and employs a three-stream graph convolu-tional structure to extract features that describe human movement.Experimental results on the NTU-RGB+D dataset demonstrate that DM-AGCN achieves an accuracy of 89.4%on the X-Sub and 95.8%on the X-View,while reducing model complexity to 3.68 GFLOPs(Giga Floating-point Oper-ations Per Second).On the Kinetics-Skeleton dataset,the model achieves a Top-1 accuracy of 37.2%and a Top-5 accuracy of 60.3%,further validating its effectiveness across different benchmarks. 展开更多
关键词 human action recognition graph convolutional network spatiotemporal fusion feature extraction
在线阅读 下载PDF
Integration of Federated Learning and Graph Convolutional Networks for Movie Recommendation Systems
16
作者 Sony Peng Sophort Siet +3 位作者 Ilkhomjon Sadriddinov Dae-Young Kim Kyuwon Park Doo-Soon Park 《Computers, Materials & Continua》 2025年第5期2041-2057,共17页
Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that lever... Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that leverages user-item interactions to generate recommendations.However,it struggles with challenges like the cold-start problem,scalability issues,and data sparsity.To address these limitations,we develop a Graph Convolutional Networks(GCNs)model that captures the complex network of interactions between users and items,identifying subtle patterns that traditional methods may overlook.We integrate this GCNs model into a federated learning(FL)framework,enabling themodel to learn fromdecentralized datasets.This not only significantly enhances user privacy—a significant improvement over conventionalmodels but also reassures users about the safety of their data.Additionally,by securely incorporating demographic information,our approach further personalizes recommendations and mitigates the coldstart issue without compromising user data.We validate our RSs model using the openMovieLens dataset and evaluate its performance across six key metrics:Precision,Recall,Area Under the Receiver Operating Characteristic Curve(ROC-AUC),F1 Score,Normalized Discounted Cumulative Gain(NDCG),and Mean Reciprocal Rank(MRR).The experimental results demonstrate significant enhancements in recommendation quality,underscoring that combining GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems. 展开更多
关键词 Recommendation systems collaborative filtering graph convolutional networks federated learning framework
在线阅读 下载PDF
MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction
17
作者 Xinlu Zong Fan Yu +1 位作者 Zhen Chen Xue Xia 《Computers, Materials & Continua》 2025年第2期3517-3537,共21页
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ... Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks. 展开更多
关键词 graph convolutional network traffic flow prediction multi-scale traffic flow spatial-temporal model
在线阅读 下载PDF
Aspect-Level Sentiment Analysis of Bi-Graph Convolutional Networks Based on Enhanced Syntactic Structural Information
18
作者 Junpeng Hu Yegang Li 《Journal of Computer and Communications》 2025年第1期72-89,共18页
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep... Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter. 展开更多
关键词 Aspect-Level Sentiment Analysis Sentiment Knowledge Multi-Head Attention Mechanism graph convolutional networks
在线阅读 下载PDF
SGP-GCN:A Spatial-Geological Perception Graph Convolutional Neural Network for Long-Term Petroleum Production Forecasting
19
作者 Xin Liu Meng Sun +1 位作者 Bo Lin Shibo Gu 《Energy Engineering》 2025年第3期1053-1072,共20页
Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecas... Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecasting.However,existing deep learning models frequently overlook the selective utilization of information from other production wells,resulting in suboptimal performance in long-term production forecasting across multiple wells.To achieve accurate long-term petroleum production forecast,we propose a spatial-geological perception graph convolutional neural network(SGP-GCN)that accounts for the temporal,spatial,and geological dependencies inherent in petroleum production.Utilizing the attention mechanism,the SGP-GCN effectively captures intricate correlations within production and geological data,forming the representations of each production well.Based on the spatial distances and geological feature correlations,we construct a spatial-geological matrix as the weight matrix to enable differential utilization of information from other wells.Additionally,a matrix sparsification algorithm based on production clustering(SPC)is also proposed to optimize the weight distribution within the spatial-geological matrix,thereby enhancing long-term forecasting performance.Empirical evaluations have shown that the SGP-GCN outperforms existing deep learning models,such as CNN-LSTM-SA,in long-term petroleum production forecasting.This demonstrates the potential of the SGP-GCN as a valuable tool for long-term petroleum production forecasting across multiple wells. 展开更多
关键词 Petroleum production forecast graph convolutional neural networks(GCNs) spatial-geological rela-tionships production clustering attention mechanism
在线阅读 下载PDF
Convolutional Graph Neural Network with Novel Loss Strategies for Daily Temperature and Precipitation Statistical Downscaling over South China
20
作者 Wenjie YAN Shengjun LIU +6 位作者 Yulin ZOU Xinru LIU Diyao WEN Yamin HU Dangfu YANG Jiehong XIE Liang ZHAO 《Advances in Atmospheric Sciences》 2025年第1期232-247,共16页
Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome th... Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome this issue,we propose a convolutional graph neural network(CGNN)model,which we enhance with multilayer feature fusion and a squeeze-and-excitation block.Additionally,we introduce a spatially balanced mean squared error(SBMSE)loss function to address the imbalanced distribution and spatial variability of meteorological variables.The CGNN is capable of extracting essential spatial features and aggregating them from a global perspective,thereby improving the accuracy of prediction and enhancing the model's generalization ability.Based on the experimental results,CGNN has certain advantages in terms of bias distribution,exhibiting a smaller variance.When it comes to precipitation,both UNet and AE also demonstrate relatively small biases.As for temperature,AE and CNNdense perform outstandingly during the winter.The time correlation coefficients show an improvement of at least 10%at daily and monthly scales for both temperature and precipitation.Furthermore,the SBMSE loss function displays an advantage over existing loss functions in predicting the98th percentile and identifying areas where extreme events occur.However,the SBMSE tends to overestimate the distribution of extreme precipitation,which may be due to the theoretical assumptions about the posterior distribution of data that partially limit the effectiveness of the loss function.In future work,we will further optimize the SBMSE to improve prediction accuracy. 展开更多
关键词 statistical downscaling convolutional graph neural network feature processing SBMSE loss function
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部