期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
G-Huber:一种面向图数据的鲁棒回归模型
1
作者 苏美红 王家兴 +1 位作者 李岩 张海 《西北工业大学学报》 北大核心 2025年第3期620-629,共10页
随着数据中含有噪声或服从重尾分布的现象越来越普遍,鲁棒回归模型成为了众多研究领域关注和研究的重点内容之一。然而,现有的鲁棒回归模型大多基于样本独立假设,忽略了样本之间的相关性,即并不能有效地用于处理图数据问题。因此,借助... 随着数据中含有噪声或服从重尾分布的现象越来越普遍,鲁棒回归模型成为了众多研究领域关注和研究的重点内容之一。然而,现有的鲁棒回归模型大多基于样本独立假设,忽略了样本之间的相关性,即并不能有效地用于处理图数据问题。因此,借助图来表示数据之间的相关性,展开了面向图数据的鲁棒回归模型研究。具体地,基于具有鲁棒性的Huber回归,提出了图Huber回归模型,所提模型既包含了样本之间的相关性信息,又具有一定的鲁棒性。在此基础上,给出了相应的求解算法。实验结果表明所提模型的表现性能远优于图LASSO,尤其当回归模型误差为重尾分布时。由此说明,该研究工作为图数据中存在噪声或重尾分布问题提供了一种有效的分析和处理方法。 展开更多
关键词 鲁棒性 回归模型 图数据 huber损失 重尾分布
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部