期刊文献+
共找到229篇文章
< 1 2 12 >
每页显示 20 50 100
SFC_DeepLabv3+:A Lightweight Grape Image Segmentation Method Based on Content-Guided Attention Fusion
1
作者 Yuchao Xia Jing Qiu 《Computers, Materials & Continua》 2025年第8期2531-2547,共17页
In recent years,fungal diseases affecting grape crops have attracted significant attention.Currently,the assessment of black rot severitymainly depends on the ratio of lesion area to leaf surface area.However,effectiv... In recent years,fungal diseases affecting grape crops have attracted significant attention.Currently,the assessment of black rot severitymainly depends on the ratio of lesion area to leaf surface area.However,effectively and accurately segmenting leaf lesions presents considerable challenges.Existing grape leaf lesion segmentationmodels have several limitations,such as a large number of parameters,long training durations,and limited precision in extracting small lesions and boundary details.To address these issues,we propose an enhanced DeepLabv3+model incorporating Strip Pooling,Content-Guided Fusion,and Convolutional Block Attention Module(SFC_DeepLabv3+),an enhanced lesion segmentation method based on DeepLabv3+.This approach uses the lightweight MobileNetv2 backbone to replace the original Xception,incorporates a lightweight convolutional block attention module,and introduces a content-guided feature fusion module to improve the detection accuracy of small lesions and blurred boundaries.Experimental results showthat the enhancedmodel achieves a mean Intersection overUnion(mIoU)of 90.98%,amean Pixel Accuracy(mPA)of 94.33%,and a precision of 95.84%.This represents relative gains of 2.22%,1.78%,and 0.89%respectively compared to the original model.Additionally,its complexity is significantly reduced without sacrificing performance,the parameter count is reduced to 6.27 M,a decrease of 88.5%compared to the original model,floating point of operations(GFLOPs)drops from 83.62 to 29.00 G,a reduction of 65.1%.Additionally,Frames Per Second(FPS)increases from 63.7 to 74.3 FPS,marking an improvement of 16.7%.Compared to other models,the improved architecture shows faster convergence and superior segmentation accuracy,making it highly suitable for applications in resource-constrained environments. 展开更多
关键词 grape leaf leaf segmentation LIGHTWEIGHT feature fusion DeepLabv3+
在线阅读 下载PDF
Recognition of grape leaf diseases using MobileNetV3 and deep transfer learning 被引量:7
2
作者 Xiang Yin Wenhua Li +1 位作者 Zhen Li Lili Yi 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第3期184-194,共11页
Timely diagnosis and accurate identification of grape leaf diseases are decisive for controlling the spread of disease and ensuring the healthy development of the grape industry.The objective of this research was to p... Timely diagnosis and accurate identification of grape leaf diseases are decisive for controlling the spread of disease and ensuring the healthy development of the grape industry.The objective of this research was to propose a simple and efficient approach to improve grape leaf disease identification accuracy with limited computing resources and scale of training image dataset based on deep transfer learning and an improved MobileNetV3 model(GLD-DTL).A pre-training model was obtained by training MobileNetV3 using the ImageNet dataset to extract common features of the grape leaves.And the last convolution layer of the pre-training model was modified by adding a batch normalization function.A dropout layer followed by a fully connected layer was used to improve the generalization ability of the pre-training model and realize a weight matrix to quantify the scores of six diseases,according to which the Softmax method was added as the top layer of the modified networks to give probability distribution of six diseases.Finally,the grape leaf diseases dataset,which was constructed by processing the image with data augmentation and image annotation technologies,was input into the modified networks to retrain the networks to obtain the grape leaf diseases recognition(GLDR)model.Results showed that the proposed GLD-DTL approach had better performance than some recent approaches.The identification accuracy was as high as 99.84%while the model size was as small as 30 MB. 展开更多
关键词 grape leaf diseases real-time recognition deep transfer learning MobileNetV3
原文传递
Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks 被引量:14
3
作者 Miaomiao Ji Lei Zhang Qiufeng Wu 《Information Processing in Agriculture》 EI 2020年第3期418-426,共9页
Grape diseases are main factors causing serious grapes reduction.So it is urgent to develop an automatic identification method for grape leaf diseases.Deep learning techniques have recently achieved impressive success... Grape diseases are main factors causing serious grapes reduction.So it is urgent to develop an automatic identification method for grape leaf diseases.Deep learning techniques have recently achieved impressive successes in various computer vision problems,which inspires us to apply them to grape diseases identification task.In this paper,a united convolutional neural networks(CNNs)architecture based on an integrated method is proposed.The proposed CNNs architecture,i.e.,UnitedModel is designed to distinguish leaves with common grape diseases i.e.,black rot,esca and isariopsis leaf spot from healthy leaves.The combination of multiple CNNs enables the proposed UnitedModel to extract complementary discriminative features.Thus the representative ability of United-Model has been enhanced.The UnitedModel has been evaluated on the hold-out PlantVillage dataset and has been compared with several state-of-the-art CNN models.The experimental results have shown that UnitedModel achieves the best performance on various evaluation metrics.The UnitedModel achieves an average validation accuracy of 99.17%and a test accuracy of 98.57%,which can serve as a decision support tool to help farmers identify grape diseases. 展开更多
关键词 grape leaf diseases IDENTIFICATION Multi-network integration method Convolutional neural network Deep learning
原文传递
Effects of the severity and timing of basal leaf removal on the amino acids profiles of Sauvignon Blanc grapes and wines 被引量:5
4
作者 YUE Xiao-feng JU Yan-lun +3 位作者 TANG Zi-zhu ZHAO Ya-meng JIAO Xu-liang ZHANG Zhen-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第9期2052-2062,共11页
The effects of the severity and timing of leaf removal(LR)on the amino acids of Sauvignon Blanc grapes and wines were studied during the 2017 growing season.High-performance liquid chromatography(HPLC)was used to anal... The effects of the severity and timing of leaf removal(LR)on the amino acids of Sauvignon Blanc grapes and wines were studied during the 2017 growing season.High-performance liquid chromatography(HPLC)was used to analyze the amino acids profiles of grape berries and wines.The basal leaves were removed at three time points(40,56 and 72 days after flowering,named LR40,LR56 and LR72,respectively)at two severity levels(one at which the first,third,and fifth basal leaves of each shoot were removed(50%level);and another at which the first six basal leaves were removed(100%level)).The results showed that leaf removal had little impact on total soluble solids(°Brix),titratable acidity,pH or berry weight.The LR72-50%treated grapes had higher berry weight,titratable acidity and°Brix than those of the other treatments.The highest concentrations of total amino acids and of total amino acids except proline were detected in LR72-50%treated grapes(2 952.58 and 2 764.36 mg L^-1,respectively);the lowest were detected in LR72-100%treated grapes(2 172.82 and 2 038.71 mg L^-1,respectively).LR72-50%treatment significantly promoted the synthesis of aspartic acid,serine,arginine,alanine,aminobutyric acid and proline at both severity levels for grapes,the concentrations of all of these amino acids were increased relative to the control concentrations.The LR72-50%,LR40-100%and LR72-100%treated wines had higher total amino acids concentrations and higher concentrations of some individual amino acids,such as arginine,alanine and serine,than did the control wines.Of all the amino acids studied,glycine,tyrosine,cysteine,methionine and lysine were not significantly influenced by the timing or severity basal defoliation in grapes and wines.The present study reveals the effects of the timing and severity of leaf removal on the amino acids profiles of grapes and wines. 展开更多
关键词 amino acid grape leaf REMOVAL Sauvignon Blanc wine
在线阅读 下载PDF
多尺度交叉融合与边界感知的葡萄叶片病害分割网络
5
作者 吕佳 胡佳乐 《农业工程学报》 北大核心 2025年第17期203-212,共10页
为解决葡萄叶片病害分割中病害区域形态多样、背景复杂与光照干扰导致的边缘模糊问题,该研究提出了一种多尺度交叉融合与边界感知的葡萄叶片病害分割网络。研究中多尺度交叉融合解码器通过结合多尺寸条形卷积核和交叉轴注意力机制,能够... 为解决葡萄叶片病害分割中病害区域形态多样、背景复杂与光照干扰导致的边缘模糊问题,该研究提出了一种多尺度交叉融合与边界感知的葡萄叶片病害分割网络。研究中多尺度交叉融合解码器通过结合多尺寸条形卷积核和交叉轴注意力机制,能够有效提取多尺度特征并捕获全局信息,提升了对不同大小病害区域的分割效果。此外,提出的轻量化边界感知引导模块,通过边界信息强化特征学习,增强了网络对边界信息的敏感性,有效提升了其对病害模糊边缘的识别能力,从而进一步提高了对病害区域的分割性能。试验结果表明,该网络在自建数据集上病害分割任务中,Dice相似系数和准确率分别达到86.3%和88.3%,能够满足葡萄叶片病害的分割需求。在公有数据集Plant Village上的试验结果显示,Dice相似系数和准确率分别达到85.2%和86.5%,验证了其良好的泛化性和实际应用潜力。在计算效率方面,该网络的参数量和浮点数运算量分别为3.75M和1.61GFLOPs,降低了计算成本并提升了运行效率。因此,该研究提出的网络为复杂环境下叶片病害区域的精确分割提供了一种更加高效且稳定的解决方案。 展开更多
关键词 病害 葡萄叶片 语义分割 多尺度交叉轴注意力 边界感知引导 轻量化网络
在线阅读 下载PDF
基于SE-MobileNetV2的葡萄叶部病害识别方法 被引量:1
6
作者 程浈浈 张必详 +2 位作者 程一帆 缪百灵 龚守富 《北方园艺》 北大核心 2025年第5期131-140,共10页
以PlantVillage公开数据集的4种葡萄叶部病害为试材,提出了一种基于改进MobileNetV2模型的轻量化识别方法,该方法以轻量级MobileNetV2模型为基础,通过在模型瓶颈层中引入SE注意力机制,增强模型对关键特征的关注能力,从而进一步优化识别... 以PlantVillage公开数据集的4种葡萄叶部病害为试材,提出了一种基于改进MobileNetV2模型的轻量化识别方法,该方法以轻量级MobileNetV2模型为基础,通过在模型瓶颈层中引入SE注意力机制,增强模型对关键特征的关注能力,从而进一步优化识别性能和减少模型参数数量,以期为实现病害的高精度诊断,同时有效降低计算资源需求提供参考依据。结果表明:改进后的模型在测试集上的识别准确率达97.5%,较原始MobileNetV2提升4.5%;与ResNet50、ResNet34和ShuffleNetV2模型相比,平均准确率分别提高10.2、18.7、28.2个百分点,且模型大小仅为20.7 MB,实现了模型运行成本和精确度的平衡,为葡萄叶部病害识别问题提供了解决方案。 展开更多
关键词 葡萄 叶部病害 注意力机制 图像分类
原文传递
改进YOLOv8n模型的葡萄叶病害识别方法
7
作者 王中安 彭太乐 《宜宾学院学报》 2025年第6期7-14,共8页
为了对葡萄叶的木质病、黑腐病和叶枯病进行检测和分类,通过在YOLOv8n网络的Neck中引入高效局部注意力机制混合尺度特征金字塔网络(ELA-HSFPN)模块,利用高层特征的通道注意机制对低层特征信息进行过滤并融合,增强多层次特征提取能力;采... 为了对葡萄叶的木质病、黑腐病和叶枯病进行检测和分类,通过在YOLOv8n网络的Neck中引入高效局部注意力机制混合尺度特征金字塔网络(ELA-HSFPN)模块,利用高层特征的通道注意机制对低层特征信息进行过滤并融合,增强多层次特征提取能力;采用条带池化策略在空间维度上提取水平方向和垂直方向的特征向量,有效捕获长距离依赖关系;设计任务动态对齐检测头(TDADH)模块,通过共享卷积减少参数量,同时通过特征提取器从多卷积层学习任务交互特征,提高任务对齐的准确性.实验结果表明,改进模型在公开数据集上的精度、召回率、mAP@50和mAP@50-90指标分别较原始YOLOv8n提升了2.1%、4%、2.5%和1.3%,模型参数量减少了3.7%,兼具检测性能和计算效率,提高了葡萄叶病害的检测精度和效率. 展开更多
关键词 葡萄叶 病害识别 深度学习 YOLOv8n TDADH
在线阅读 下载PDF
基于改进SSD算法的葡萄叶病斑检测方法研究
8
作者 白滔 滕开良 《农业技术与装备》 2025年第6期3-7,共5页
针对葡萄叶病斑外观形状多变、病斑密集及小目标漏检等问题,提出了一种基于改进SSD算法的葡萄叶病斑检测算法。引入CSwin Transformer自注意力模块以实现局部特征与全局特征的有效交互。将原多尺度特征提取模块改成特征金字塔网络,以实... 针对葡萄叶病斑外观形状多变、病斑密集及小目标漏检等问题,提出了一种基于改进SSD算法的葡萄叶病斑检测算法。引入CSwin Transformer自注意力模块以实现局部特征与全局特征的有效交互。将原多尺度特征提取模块改成特征金字塔网络,以实现多尺度融合,并将CBAM注意力机制引入多尺度融合网络,以增强对小目标特征的捕捉能力。将原交叉熵损失函数替换为Focal Loss损失函数以缓解模型训练时正负样本失衡问题。实验结果表明,相较于SSD原模型,所提改进模型在2种病害检测精度上均有所提升,能够为田间葡萄叶病害检测提供新的选择方案。 展开更多
关键词 葡萄叶 病斑 SSD CSwin Transformer 注意力机制
在线阅读 下载PDF
基于改进ResNet的葡萄叶部病害识别方法研究
9
作者 王聪 颜安 《计算机与数字工程》 2025年第5期1434-1440,共7页
葡萄生长过程中时常会遭受病害的侵扰,当病害发生时,如果能及时发现病害,就能够有效避免葡萄发育不良,产量下降的情况。但葡萄病害病斑多存在于局部小范围,特征提取困难,导致模型准确率低。针对这个问题,论文提出一种基于注意力机制的... 葡萄生长过程中时常会遭受病害的侵扰,当病害发生时,如果能及时发现病害,就能够有效避免葡萄发育不良,产量下降的情况。但葡萄病害病斑多存在于局部小范围,特征提取困难,导致模型准确率低。针对这个问题,论文提出一种基于注意力机制的葡萄叶片病害识别方法。将CA注意力机制与ResNet结合起来,改进了网络中的残差模块,加强了网络对图像的特征提取能力。结果表明,改进后的ResNet网络在AI Challenger 2018数据集中的葡萄病害图像上识别准确率可达99.82%,比起其他网络模型准确率更高,收敛速度更快。而且在与加入其他注意力机制的网络进行比较时,改进的网络也表现出了更优的性能。最后经过热力图可视化展示,改进的网络的特征提取能力也好于原ResNet网络模型。 展开更多
关键词 葡萄叶片 病害识别 注意力机制 ResNet CANet
在线阅读 下载PDF
基于改进YOLOv8的葡萄叶片病害轻量化检测
10
作者 樊宇轩 郑喜娟 《现代农业研究》 2025年第7期73-79,共7页
葡萄叶片病害是制约葡萄产业发展的关键因素之一。传统人工识别方法存在效率低下、误判率高且易引发不当治理等问题,而基于目标检测的深度学习技术为病害精准识别提供了高效可靠的解决方案。本研究从数据增强与算法优化两个维度来提高... 葡萄叶片病害是制约葡萄产业发展的关键因素之一。传统人工识别方法存在效率低下、误判率高且易引发不当治理等问题,而基于目标检测的深度学习技术为病害精准识别提供了高效可靠的解决方案。本研究从数据增强与算法优化两个维度来提高葡萄叶片病害检测准确率,首先通过几何变换来增强数据多样性,其次采用神经网络结构FasterNet对YOLOv8模型的C2f模块中进行改进。研究发现数据增强后,黑麻疹病,黑腐病和叶枯病的检测准确率分别提高了11.25%,2.33%和1.11%,模型的mAp50值为0.941。而且改进后YOLOv8模型的计算量减少了21.9%,模型大小减少了23.43%,在精度与效率上均优于YOLO系列其他对比模型。改进后的YOLOv8模型不仅能够有效减少模型参数量和计算量,还为其他作物病害识别提供理论依据。 展开更多
关键词 葡萄叶片病害 YOLOv8 FasterNet 双线性插值法
在线阅读 下载PDF
酿酒葡萄机械化修剪技术与装备研究现状与展望
11
作者 李翔 杨发展 +3 位作者 沈熙童 赵烁 彭泽辉 徐国立 《中国农机化学报》 北大核心 2025年第9期163-168,219,共7页
酿酒葡萄机械化修剪技术与装备的研究是推动该产业发展的关键环节。因种植模式的多样化,导致机械化修剪装备还存在类型多、结构多、适应性差的问题。为使研究人员能够更快、更详细地了解行业内主流机械装备与技术,以文献综述的方法,归... 酿酒葡萄机械化修剪技术与装备的研究是推动该产业发展的关键环节。因种植模式的多样化,导致机械化修剪装备还存在类型多、结构多、适应性差的问题。为使研究人员能够更快、更详细地了解行业内主流机械装备与技术,以文献综述的方法,归纳总结国内外酿酒葡萄机械化修剪技术与装备,分为动定刀式、旋转割刀式、圆盘刀式、圆盘锯式及其他类型,并对比分析不同技术与装备的工作原理和特点。指出当前存在机械结构种类多样、季节性修剪对切割机构要求高、修剪作业智能化程度低等问题,提出加强修剪装备基础理论和关键参数、开展酿酒葡萄通用化修剪刀具、构建剪枝装备智能感知技术等对策。通用性及集成度高、作业智能化是剪枝机械化技术未来趋势,以期对我国酿酒葡萄剪枝技术与装备的发展提供参考。 展开更多
关键词 酿酒葡萄 葡萄藤 修剪刀具 动定刀修剪 叶幕修剪
在线阅读 下载PDF
Effects of leaf removal and cluster thinning on berry quality of Vitis vinifera cultivars in the region of Weibei Dryland in China 被引量:7
12
作者 SONG Chang-zheng WANG Chao +1 位作者 XIE Sha ZHANG Zhen-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第7期1620-1630,共11页
Leaf removal and cluster thinning were carried out prior to veraison to evaluate the effects on berry quality of two Vitis vinifera cultivars(Cabernet Sauvignon and Ugni Blanc) in the Weibei Dryland of China in 2013... Leaf removal and cluster thinning were carried out prior to veraison to evaluate the effects on berry quality of two Vitis vinifera cultivars(Cabernet Sauvignon and Ugni Blanc) in the Weibei Dryland of China in 2013 and 2014, and comprehensive analysis of the chemical and volatile composition in berries was performed. The results showed that content of reducing sugar in both varieties was not affected while total acid was generally decreased by leaf removal and cluster thinning. The pH of berry juice was correspondingly higher in most treatment groups. Meanwhile, promoting effects on accumulation of total phenols, tannin in both varieties and total anthocyanins in Cabernet Sauvignon were found. As for monomeric anthocyanins, percentage of malvidin and its derivatives was decreased by leaf removal and cluster thinning. Besides, cinnamylated anthocyanins decreased with the intensity of cluster thinning. The accumulation of non-anthocyanin phenolics was similarly affected in the two varieties. Notably, cluster thinning was more effective on enhancing the phenolics content than leaf removal. The combination of middle level of leaf removal and cluster thinning was the most favor to the accumulation of phenolic acids. Furthermore, cluster thinning could also significantly enhance the synthesis of flavanols and stilbenes. Lastly, content and variety of aroma compounds in both grape varieties were also significantly affected by the treatments. The results provided a theoretical basis for a combination of leaf removal and cluster thinning to improve quality of grapes and wines. 展开更多
关键词 leaf removal cluster thinning wine grape quality comprehensive analysis
在线阅读 下载PDF
Effect of Gamma Irradiation Doses on Morphological and Biochemical Attributes of Grape Saplings 被引量:1
13
作者 A. F. M. Saiful Islam M. Muzahedul Islam +1 位作者 Md. Mehedi Hasan Md. Mehedi Hasan 《Agricultural Sciences》 2015年第5期505-512,共8页
The demand of grape in Bangladesh is fulfilled through import from foreign countries. The fruits of local cultivars of grapes are sour and seeded. Development of seedless grape varieties having increased sweetness, hi... The demand of grape in Bangladesh is fulfilled through import from foreign countries. The fruits of local cultivars of grapes are sour and seeded. Development of seedless grape varieties having increased sweetness, higher yield with better nutritional quality is necessary to reduce the import dependency. The present research activities are the part of a grape improvement project. A pot experiment was conducted at the Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, during June to November 2011 to determine the suitable gamma irradiation doses on growth, leaf area and biochemical characters of grape saplings. Three vegetative bud stages viz. bud initiation stage, 4-leaf stage and 8-leaf stage, and four doses of gamma irradiation viz. 0, 5, 10, and 15 Gy were used as treatments. The experiment was laid out in a Randomized Complete Block Design with four replications. Different irradiation doses and vegetative bud stages showed significant variations in respect of plant growth characters, leaf area, soluble protein and total sugar content. Interaction effects also had significant variations on most of the parameters studied. Higher doses of gamma irradiation had showed detrimental effect on grape saplings. Generally, increased in irradiation doses showed decreased and detrimental effects on most of the parameters under study. Maximum numbers and length of roots, total dry matter, leaf area and chlorophyll-a and chlorophyll-b content were found at 5 Gy irradiation dose. Total soluble protein and sugar content of leaf were found maximum at no irradiation and 15 Gy, respectively. Higher number of roots and length, total dry matter, leaf area, chlorophyll-a, and b and soluble protein content of leaf were observed at bud initiation stage while 8-leaf stage showed maximum total sugar of leaf. In the combined effect of gamma irradiation and vegetative bud stages, all parameters showed best results in 5 Gy with bud initiation stage except total sugar content of leaf. 展开更多
关键词 grape SAPLING Gamma Irradiation MORPHOLOGICAL and BIOCHEMICAL Parameters leaf Area SOLUBLE Protein
暂未订购
葡萄叶片对空气中邻苯二甲酸酯的吸收累积特征
14
作者 李海峰 刘河疆 +4 位作者 郭文博 苏含明 刘玮 刘志刚 刘国宏 《甘肃农业大学学报》 CAS CSCD 北大核心 2024年第4期130-136,共7页
【目的】为探索葡萄叶片及其内部组成物质对空气中PAEs的吸收累积特征,阐明葡萄叶片从空气中吸收累积DBP、DEHP、DIBP的能力及规律。【方法】试验采用盆栽葡萄覆盖玻璃罩的方式,在玻璃罩内放置盛有DBP、DEHP、DIBP混合物的甲醇溶液培养... 【目的】为探索葡萄叶片及其内部组成物质对空气中PAEs的吸收累积特征,阐明葡萄叶片从空气中吸收累积DBP、DEHP、DIBP的能力及规律。【方法】试验采用盆栽葡萄覆盖玻璃罩的方式,在玻璃罩内放置盛有DBP、DEHP、DIBP混合物的甲醇溶液培养皿,让PAEs自然挥发被植株吸收累积,研究叶片及其内部组成物质脂肪、糖、蛋白质对PAEs的吸收累积特征。【结果】3个品种葡萄叶片对DBP、DEHP和DIBP的累积量随着PAEs处理浓度的增高而增大,且不同污染水平各单体含量及总含量差异显著(P<0.05)。葡萄叶片对DEHP的累积量最高,在高污染处理中其累积量占比在92.90%~93.86%,其次为DBP和DIBP。叶片脂肪、糖、蛋白质中均检出DBP、DEHP和DIBP,各污染处理3种化合物的含量与空白差异显著(P<0.05),三者在脂肪中的累积量最多,最高可达87.06 mg/kg,在糖中最高仅为5.818 mg/kg,在蛋白质中最高仅为3.793 mg/kg。通过对葡萄叶片累积PAEs能力与组成物质的相关性进行分析,葡萄叶片PAEs累积量与脂肪中PAEs含量呈显著正相关相关,与糖和蛋白无显著相关性。【结论】葡萄叶片可从空气中吸收累积PAEs,其累积PAEs能力与脂肪密切相关。 展开更多
关键词 葡萄叶片 邻苯二甲酸酯 空气 吸收累积
在线阅读 下载PDF
Response of 14C-Salicylic Acid to Heat Stress After Being Fed to Leaves of Grape Plants
15
作者 LIUYue-ping HUANGWei-dong WANGLi-jun 《Agricultural Sciences in China》 CAS CSCD 2005年第2期106-112,共7页
An experiment was conducted to investigate the response of salicylic acid as a second messenger to the heat stress in grape plants. For this purpose, all leaves of grape (Vitis vinifera×V. labrussa L. cv. Jingxiu... An experiment was conducted to investigate the response of salicylic acid as a second messenger to the heat stress in grape plants. For this purpose, all leaves of grape (Vitis vinifera×V. labrussa L. cv. Jingxiu) plants were removed except the 3rd, 4th, 5th, 6th, and 7th ones. The 5th leaf was fed with C-SA, and the 4th and 6th leaves were exposed to high 14 temperature at 40±0.5°C. It was observed that more C-SA transported out from the 5th leaf and the distribution of C-SA 14 14 in each organ of plant altered in response to heat stress. The accumulation of C-SA in both the 4th and 6th leaves being 14 exposed to high temperature was at least three times higher than that in control. The distribution of C-SA in other distal 14 leaves (the 3rd and 7th leaf) decreased, but more C-SA accumulated in stems adjacent to the 4th or 6th leaf exposed to 14 high temperature. In addition, there was more C-SA being transported upwards or downwards while the 4th and 6th 14 leaves were exposed to high temperature respectively. Therefore, our results suggested that SA was closely involved in signal transduction of heat stress in grape plants. However, the ratio of C radioactivity assayed after SA being extracted 14 to that of direct assay with apparatus was more than 70%, which indicated about 30% C was lost or catabolized during 14 transportation. 展开更多
关键词 grape plant Heat stress C-salicylic acid RESPONSE leaf 14
在线阅读 下载PDF
基于改进EfficientNetB0模型的葡萄叶部病害识别方法 被引量:6
16
作者 胡施威 邓建新 +1 位作者 王浩宇 邱林 《现代电子技术》 北大核心 2024年第15期73-80,共8页
为了高效、准确地识别葡萄叶部病害,文中提出了LE-EfficientNet模型,在EfficientNetB0模型基础上,采用大核注意力(LKA)机制替换原模型部分MBConv模块中的压缩激励网络(SENet),接着利用跳跃连接在最后一层卷积层后面融入高效通道注意力机... 为了高效、准确地识别葡萄叶部病害,文中提出了LE-EfficientNet模型,在EfficientNetB0模型基础上,采用大核注意力(LKA)机制替换原模型部分MBConv模块中的压缩激励网络(SENet),接着利用跳跃连接在最后一层卷积层后面融入高效通道注意力机制(ECA),结合三种注意力机制让网络更高效地提取葡萄叶部病害的局部重要信息,并引用Adam优化器替换原模型的SGD优化器,提升了分类模型的泛化能力。在PlantVillage葡萄叶部病害数据集上训练,结果表明,LE-EfficientNet模型相比原模型准确率提升了1.58%,总体精度提升了1.62%,召回率提升了1.46%,F_(1)分数提升了1.53%,并且参数量仅有10.18 MB,比原模型参数量降低2.7 MB,与其他经典网络模型相比,性能评估指标均有不同程度的提升,该研究为葡萄叶部病害识别提供了新的参考与借鉴。 展开更多
关键词 葡萄叶部病害 卷积神经网络 图像分类 大核注意力机制 高效通道注意力机制 EfficientNetB0
在线阅读 下载PDF
褪黑素对葡萄叶片发育衰老过程中亚细胞活性氧代谢的影响 被引量:8
17
作者 王宇航 李斗 +5 位作者 王春恒 金鑫 陈亚娟 戴子博 冯丽丹 杨江山 《园艺学报》 CSCD 北大核心 2024年第1期103-120,共18页
以12年生‘红地球’葡萄为试材,于6月上旬(叶龄22 d)开始分别叶面喷施200μmol·L^(-1)DL-4–氯苯丙氨酸(CPA,褪黑素合成抑制剂)和50~200μmol·L^(-1)褪黑素(MT),以蒸馏水作为对照,每30d喷施1次,共喷施5次,定期取样测定叶片叶... 以12年生‘红地球’葡萄为试材,于6月上旬(叶龄22 d)开始分别叶面喷施200μmol·L^(-1)DL-4–氯苯丙氨酸(CPA,褪黑素合成抑制剂)和50~200μmol·L^(-1)褪黑素(MT),以蒸馏水作为对照,每30d喷施1次,共喷施5次,定期取样测定叶片叶绿素含量及叶绿体、线粒体和细胞溶质中活性氧水平、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸—谷胱甘肽(AsA–GSH)循环酶活性。结果表明:叶片发育至115 d,其叶绿素含量迅速降低,各亚细胞组分活性氧水平逐渐上升,抗氧化酶和AsA–GSH循环酶活性逐渐降低;亚细胞组分对比发现,叶片衰老过程中水平在叶绿体组分中最高,H_(2)O_(2)水平在细胞溶质组分中最高。150μmol·L^(-1)MT处理能显著降低各亚细胞组分中的O_(2)^(-·)和H_(2)O_(2)水平,各亚细胞组分中SOD、POD和CAT活性显著提高,同时,显著提高了各亚细胞组分抗坏血酸过氧化物酶(APX)、抗坏血酸氧化酶(AAO)、脱氢抗坏血酸还原酶(DHAR)、单脱氢抗坏血酸还原酶(MDHAR)和谷胱甘肽还原酶(GR)活性,各亚细胞组分AsA、DHA和GSH含量显著提高,显著提高叶片叶绿素a、叶绿素b及类胡萝卜素含量,从而延缓了叶片的衰老进程。CPA处理抑制了各亚细胞组分抗氧化酶和AsA–GSH循环酶活性,活性氧水平显著提高,叶绿素含量下降。综上所述,外源MT通过提高葡萄叶片中各亚细胞组分的SOD、POD、CAT活性和AsA–GSH循环酶活性,提高各亚细胞组分的AsA和GSH含量,增强叶片抗氧化能力,进而有效清除活性氧,延缓叶片的衰老。 展开更多
关键词 葡萄 褪黑素 叶片衰老 活性氧 抗氧化 抗坏血酸—谷胱甘肽循环
原文传递
基于改进MobileViT的葡萄叶部病害识别模型 被引量:4
18
作者 胡施威 邱林 邓建新 《山东农业科学》 北大核心 2024年第10期159-166,共8页
本研究提出了一种优化的葡萄叶部病害识别模型CD-MobileViT。首先,将MobileViT作为基础网络,在Layer1、Layer2后面均嵌入坐标注意力模块CA(Coordinate Attention),以使网络能更有效地捕捉不同位置的关键特征;其次,在网络全连接层之后添... 本研究提出了一种优化的葡萄叶部病害识别模型CD-MobileViT。首先,将MobileViT作为基础网络,在Layer1、Layer2后面均嵌入坐标注意力模块CA(Coordinate Attention),以使网络能更有效地捕捉不同位置的关键特征;其次,在网络全连接层之后添加Dropout层,防止数据出现过拟合现象;最后,选用结合权重衰减的优化器AdamW(Adam with Weight Decay Regularization),更好地控制模型复杂度并提高泛化能力。实验结果显示,相较于MobileViT基础网络,改进后的CD-MobileViT网络在精确率、召回率、F1得分和准确率方面分别提高了1.77、1.85、1.65、1.75个百分点,与其他几种经典网络模型(InceptionV1、MobileNetV2、EfficientNetB0、VGG-16)相比也有不同程度的提升(0.25~1.47个百分点),说明本研究提出的模型在葡萄叶部病害识别上有良好的效果,未来可部署到移动端使用,为葡萄叶部病害的准确识别提供新的解决方案。 展开更多
关键词 葡萄叶部病害识别 MobileViT网络 坐标注意力 AdamW优化器 Dropout层
在线阅读 下载PDF
新疆葡萄砧木叶片解剖结构观察及抗旱性评价 被引量:1
19
作者 丁祥 钟海霞 +7 位作者 王西平 宋军阳 吴久赟 刘国宏 张付春 胡鑫 潘明启 伍新宇 《分子植物育种》 CAS 北大核心 2024年第15期5064-5074,共11页
为了对新疆葡萄砧木叶片进行抗旱性评价,本研究以‘Beta’、‘SO4’、‘5BB’等25种不同砧木为试验材料,通过石蜡切片等手段,使用Image J软件删除对叶片的解剖结构进行测量,利用SPSS 25.0软件对砧木的抗旱性进行聚类分析,并通过主成分... 为了对新疆葡萄砧木叶片进行抗旱性评价,本研究以‘Beta’、‘SO4’、‘5BB’等25种不同砧木为试验材料,通过石蜡切片等手段,使用Image J软件删除对叶片的解剖结构进行测量,利用SPSS 25.0软件对砧木的抗旱性进行聚类分析,并通过主成分分析最终确定能准确评价砧木抗旱性能的主要指标。结果表明,不同砧木的叶片厚度、栅栏组织、海绵组织、上下表皮、角质层等厚度均有显著或极显著差异,其抗旱能力也有所差异,通过聚类分析和主成分分析综合评价,筛选出抗旱能力较强的砧木品种。通过比较分析、综合评价得出抗旱性较强的砧木品种:‘SO4’、‘河岸4号’、‘Dogridge’、‘Doult’、‘自由’。抗旱能力中等的品种:‘山河4号’、‘河岸2号’、‘河岸3号’、‘河岸5号’、‘河岸7号’、‘河岸9号’、‘河岸10号’、‘Gloirede’、‘188-08’、‘Beta’、‘Stdoarge’、‘101-14MG’。抗旱能力弱的品种为:‘110R’、‘5C’、‘5BB’、‘11039’、‘山河3号’、‘Harmony’、‘山河1号’、‘Ganzin’。本研究为新疆地区抗旱砧木的优选提供科学依据,同时也为其他品种抗旱性鉴定奠定理论基础,后期还需结合抗旱田间表型和理化指标进行综合评价。 展开更多
关键词 葡萄 砧木 叶片解剖 细胞学 抗旱性评价
原文传递
基于EBP-YOLOv8的葡萄叶病害检测与识别方法研究 被引量:7
20
作者 蔺瑶 曾晏林 +4 位作者 刘金涛 李佳骏 李双 董晖 杨毅 《山东农业大学学报(自然科学版)》 北大核心 2024年第3期322-334,共13页
为提高实际环境中葡萄叶病害检测的准确率,适合视频实时监测、无人机等嵌入式AI应用场景,对YOLOv8目标检测模型从模型结构、轻量化等方面进行改进,构建了EBP-YOLOv8。首先在颈部网络中引入BiFPN结构,加强模型特征层之间的融合,改善对小... 为提高实际环境中葡萄叶病害检测的准确率,适合视频实时监测、无人机等嵌入式AI应用场景,对YOLOv8目标检测模型从模型结构、轻量化等方面进行改进,构建了EBP-YOLOv8。首先在颈部网络中引入BiFPN结构,加强模型特征层之间的融合,改善对小目标的检测能力;其次使用C2_P来替换颈部网络中的C2f结构,实现模型的轻量化,在降低模型计算量的同时而不影响其精度;然后在特征提取网络中融入EMA注意力机制,提升网络对感兴趣区域的关注,提升模型对复杂背景、相似病斑的识别能力;最后将CIoU损失函数替换为ECIoU损失函数,进一步提升模型的检测性能,使模型能够更好地收敛。EBP-YOLOv8对比YOLOv8n、Faster-RCNN、RetinaNet、YOLOv8n、YOLOv8s、YOLOv7、YOLOv7-Tiny、YOLOv4-Tiny,mAP分别提升了3.2%、13.87%、3.49%、3.2%、1.3%、5%、4.7%、8.8%,模型大小仅5.3MB。改进后的算法在轻量化及保证实时性的同时有效提高了检测精度,可以为开发葡萄叶病害实时检测边缘系统提供有效参考。 展开更多
关键词 葡萄叶病害 YOLOv8 BiFPN EMA注意力机制 轻量化
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部