期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于VMDFK和图像编码技术CNN网络刀具磨损状态识别
被引量:
5
1
作者
刘红军
胡轶玮
韩文杰
《中国工程机械学报》
北大核心
2024年第1期94-100,共7页
针对采集刀具加工数据过程中有冗余信息和干扰信号,导致刀具磨损状态特征识别困难、识别精度不高等问题,提出一种基于快速谱峭度图的变分模态分解模态分量选取(VMDFK)与格拉姆角场(GAF)图像编码技术相结合的卷积神经网络(CNN)刀具磨损...
针对采集刀具加工数据过程中有冗余信息和干扰信号,导致刀具磨损状态特征识别困难、识别精度不高等问题,提出一种基于快速谱峭度图的变分模态分解模态分量选取(VMDFK)与格拉姆角场(GAF)图像编码技术相结合的卷积神经网络(CNN)刀具磨损状态识别方法。首先通过变分模态分解和快速谱峭度图,筛选符合要求的模态分量并重构;再采用形态滤波对重构信号去噪和增强;最后通过格拉姆角场图像编码技术,将经去噪增强后的信号转换为格拉姆角场图,并将其输入卷积神经网络中提取特征,较好地解决了信号中的干扰和图像识别中图像特征不明显问题。实验结果表明:该方法可准确清晰地展现刀具磨损状态的特征,在即时性、准确度等方面有较大提高,实现对刀具不同磨损状态的实时智能识别,具有较好的效果。
展开更多
关键词
刀具磨损状态识别
变分模态分解
快速谱峭度
形态滤波
格拉姆角场
深度学习
在线阅读
下载PDF
职称材料
题名
基于VMDFK和图像编码技术CNN网络刀具磨损状态识别
被引量:
5
1
作者
刘红军
胡轶玮
韩文杰
机构
沈阳航空航天大学机电工程学院
沈阳飞机工业(集团)有限公司工程技术中心工装设计所
出处
《中国工程机械学报》
北大核心
2024年第1期94-100,共7页
基金
国家自然科学基金资助项目(51875367)。
文摘
针对采集刀具加工数据过程中有冗余信息和干扰信号,导致刀具磨损状态特征识别困难、识别精度不高等问题,提出一种基于快速谱峭度图的变分模态分解模态分量选取(VMDFK)与格拉姆角场(GAF)图像编码技术相结合的卷积神经网络(CNN)刀具磨损状态识别方法。首先通过变分模态分解和快速谱峭度图,筛选符合要求的模态分量并重构;再采用形态滤波对重构信号去噪和增强;最后通过格拉姆角场图像编码技术,将经去噪增强后的信号转换为格拉姆角场图,并将其输入卷积神经网络中提取特征,较好地解决了信号中的干扰和图像识别中图像特征不明显问题。实验结果表明:该方法可准确清晰地展现刀具磨损状态的特征,在即时性、准确度等方面有较大提高,实现对刀具不同磨损状态的实时智能识别,具有较好的效果。
关键词
刀具磨损状态识别
变分模态分解
快速谱峭度
形态滤波
格拉姆角场
深度学习
Keywords
tool wear recognition
variational modal decomposition
fast kurto
gram
morphological filtering
gram angularfield
deep learning
分类号
TG713 [金属学及工艺—刀具与模具]
TG529 [金属学及工艺—金属切削加工及机床]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于VMDFK和图像编码技术CNN网络刀具磨损状态识别
刘红军
胡轶玮
韩文杰
《中国工程机械学报》
北大核心
2024
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部