The uniform refinement mechanisms and methods of deformed mixed and coarse grains inside a solution-treatment Ni-based superalloy during two-stage annealing treatment have been investigated.The two-stage heat treatmen...The uniform refinement mechanisms and methods of deformed mixed and coarse grains inside a solution-treatment Ni-based superalloy during two-stage annealing treatment have been investigated.The two-stage heat treatment experiments include an aging annealing treatment(AT)and a subsequent recrystallization annealing treatment(RT).The object of AT is to precipitate someδphases and consume part of storage energy to inhibit the grain growth during RT,while the RT is to refine mixed and coarse grains by recrystallization.It can be found that the recrystallization grains will quickly grow up to a large size when the AT time is too low or the RT temperature is too high,while the deformed coarse grains cannot be eliminated when the AT time is too long or the RT temperature is too low.In addition,the mixed microstructure composed of some abnormal coarse recrystallization grains(ACRGs)and a large number of fine grains can be observed in the annealed specimen when the AT time is 3 h and RT temperature is 980℃.The phenomenon attributes to the uneven distribution ofδphase resulted from the heterogeneous deformation energy when the AT time is too short.In the regions with a large number ofδphases,the recrystallization nucleation rate is promoted and the growth of grains is limited,which results in fine grains.However,in the regions with fewδphases,the recrystallization grains around grain boundaries can easily grow up,and the new recrystallization nucleus is difficult to form inside grain,which leads to ACRGs.Thus,in order to obtain uniform and fine annealed microstructure,it is a prerequisite to precipitate even-distributedδphase by choosing a suitable AT time,such as 12 h.Moreover,a relative high RT temperature is also needed to promote the recrystallization nucleation aroundδphase.The optimal annealing parameters range for uniformly refining mixed crystal can be summarized as:900℃×12 h+990℃×(40-60 min)and 900℃×12 h+1000℃×(10-15 min).展开更多
Herein,the effect of direct current(DC)attached the mold on refining the microstructure and alleviating the central segregation of a tin–bismuth(Sn–10 wt.%Bi)alloy ingot during the solidification process has been in...Herein,the effect of direct current(DC)attached the mold on refining the microstructure and alleviating the central segregation of a tin–bismuth(Sn–10 wt.%Bi)alloy ingot during the solidification process has been investigated.The experiment used a self-made device,which can achieve the effect of refining the solidified structure and alleviate the segregation of the metal casting.Numerical simulations were performed to calculate the Lorentz force,Joule heating and induced melt vortex flow for the magneto-hydrodynamic case.Our results show that the maximum velocity of the global electro-vortex reached 0.017 m s^(–1).The DC-induced electro-vortex was found to be the primary reason of refining the equiaxed grain and alleviating the segregation of theβ-Sn crystal boundary.The grain refining effect observed in these experiments can be solely attributed to the forced melt flow driven by the Lorentz force.DC field attached the mold can lead to grain refinement and alleviate the segregation of the ingot via a global vortex.The technology can be applied not only to opened molds,but also toward improving the quality in closed molds.展开更多
The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification pro...The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification process of the Al—2Sc alloy controlled by a novel PMS using NdFeB permanent magnets under various rotation speeds(0,50,100 and 150 r/min).The simulated results reveal that the maximum electromagnetic force increases proportionally from 4.14 to 12.39 kN/m^(3)and the maximum tangential velocity increases from 0.13 to 0.36 m/s when the rotation speed of PMS enhances from 50 to 150 r/min in the ingot melt.Besides,the experimental results demonstrate that PMS can achieve a uniform distribution of blocky Al_(3)Sc precipitated phase in the longitudinal direction under the impact of a forced fluid flow.Moreover,increasing rotation speed of PMS is beneficial to refining aluminum grain size significantly and decreasing the texture intensity in the alloy.In addition,the Brinell hardness of Al-2Sc alloy is increased by 33%to 27.8 HB and the tensile strength is enhanced by 34%-128.2 MPa,due to the improved distribution of the strengthening Al_(3)SC phase and the grain refinement of Al matrix under the impact of PMS.This work provides an effective application of NdFeB permanent magnets in the metal cast field.展开更多
Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of...Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of Al-7Si. It is found that the number and the settlement of AlB2 particles in the melt all have effect on the grain refining efficiency. On the basis of experiments and theoretical analysis, a new grain refinement mechanism was proposed to explain the grain refinement action of Al-3B on hypoeutectic Al-Si alloys. The formation of 'Al-AlB2' shell structure is the direct reason for grain refinement and the undissolved AlB2 particles is the indirect nucleating base for subsequent α(Al) phase.展开更多
To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure an...To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.展开更多
Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners a...Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses.展开更多
A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed cry...A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed crystal with a diameter of (110-a:17) ~tm. The results indicate that A14C3 and TiC particle cluster, rather than a single particle, plays an important role in the refining process. Compared with the simplex smooth nucleating substrate, concave regions on the particle cluster provide easier route for the transformation from liquid Mg atoms to stable nucleus. Nucleus with a small size can also reach the critical nucleation radius when they attach on the concave regions of the substrate. A14C3 and TiC particle clusters thus become more favorable nucleating substrate for a-Mg grains.展开更多
Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under...Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under uniaxial tension along rolling direction(RD)and transverse direction(TD)at-50,25,50,and 150℃.Results reveal a transition from high strength with limited elongation at-50℃ to significant softening and maximum ductility at 150℃.TD samples consistently showed 2%-6%higher strength than RD;however,this yield anisotropy diminished at 150℃ due to the shift from twinning to thermally activated slip and recovery.Fractography indicated a change from semi-brittle to fully ductile fracture with increasing temperature.Electron backscattered diffraction(EBSD)analysis confirmed twinning-driven grain refinement at low temperatures,while deformation at high temperatures involved grain elongation along shear zones,enabling greater strain accommodation before material failure.展开更多
Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simult...Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously.Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility.In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced.Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence.This review can be used as a reference for further development of high-performance fine-grained Mg alloys.展开更多
In this study, a series of tests were conducted by using aluminum-based alloy to determine the formation of grain refining structure based on the ultrasonic vibration (UV). Furthermore, the simulation test and effect ...In this study, a series of tests were conducted by using aluminum-based alloy to determine the formation of grain refining structure based on the ultrasonic vibration (UV). Furthermore, the simulation test and effect of ultrasonic output power were studied using ammonium chloride. Finally, the mechanism of grain refinement was investigated. The results show that: (1) By applying the UV to aluminum-base alloy, the grain refining rate of ingots tended to increase with the increase of the output value of UV. (2) It was confirmed that time from after the pour to the beginning of crystallization as well as cloudiness tended to decrease with increasing the ultrasonic power value of UV. Moreover, it can be seen from each cooling curve that a uniform temperature gradient existed in the melt as the power of UV increased, that made the melt strongly stirred. (3) It was also considered that the grain refining effect of ingots, which was observed from the simulation tests, resulted from nucleation action and stirring division action by applying the UV.展开更多
Al-Ti-B-Er refiner was successfully prepared by CR (contact reaction process), a process based on SHS (self propagating high-temperature synthesis). The microstructure of the alloy was studied by optical microscop...Al-Ti-B-Er refiner was successfully prepared by CR (contact reaction process), a process based on SHS (self propagating high-temperature synthesis). The microstructure of the alloy was studied by optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometry. The results showed that Al-Ti-B-Er alloy was composed of α-Al, block-like TiAl3 and flocked TiB2. Compared with Al-Ti-B refiner, formation of TiAlEr compounds, Er modified the morphology of TiAl3 phase, and dispersed the TiB2 and TiAl3. An excellent grain refining performance was obtained when adding 1 wt.% Al-Ti-B-Er in Al-10Zn-1.9Mg-1.6Cu-0.12Zr alloy, the average grain size was about 40 μm. The refinement mechanism of Al-Ti-B-Er was also discussed. Er changed the morphology of TiAl3, TiB2 phase, the refiner would be more efficient. The decomposition of TiAlEr compounds which released Er refrained the growth of TiAl3 and made TiB2 difficult to aggregate or deposit, therefore resulted in more particles being efficient nucleation substrate.展开更多
Magnesium is the lightest constructional metal,which makes it an important material for different applications like automotive,transportation,aviation and aerospace.There are several studies about developing propertie...Magnesium is the lightest constructional metal,which makes it an important material for different applications like automotive,transportation,aviation and aerospace.There are several studies about developing properties of existing Mg alloys and introducing new alloy systems to industrial producers.An important way to improve properties of metallic materials is to decrease grain size that results almost in increasing all kind of properties of the material.This review paper aims to summarize the literature about grain refining of magnesium alloys.The text is consisting of three sections,which focused on the(1)grain refining methods used in the past,which are not used today,(2)grain refining methods currently being used in the industry and(3)novel and newly developed methods that may find usage in the industry in future.Before explaining grain refining methods of magnesium alloys a general summary about grain refinement of metals is also provided.展开更多
The formation of fine,non-dendritic equiaxed grains throughout a casting without the addition of refiners(i.e.independent of alloy chemistry),is made possible by using ultrasonic,magnetic or pulsed magnetic and electr...The formation of fine,non-dendritic equiaxed grains throughout a casting without the addition of refiners(i.e.independent of alloy chemistry),is made possible by using ultrasonic,magnetic or pulsed magnetic and electric current pulse techniques.The dominant mechanisms proposed for the grain refinement produced during the application of an external field are cavitation phenomena assisted nucleation or fragmentation of dendrites(ultrasonic field),wall crystals arising from the cold surface of the mould(electric current pulse,magnetic and pulsed magnetic fields).In all these cases fluid flow provides an additional contribution(e.g.reduced temperature gradients,growth rate and remelting of dendrites)to maintaining an equiaxed grain structure.The origin of equiaxed grains under an external field also depends on the casting conditions(volume and shape of casting)and the type of alloy other than the mechanisms specific to a particular technique.The current work aims to provide a detailed understanding of the various factors and mechanisms that influence the grain refinement achieved during the solidification of pure metals(magnesium and zinc)subjected to Ultra Sonic Treatment(UST).The role of the temperature range of UST application,time duration and an unpreheated sonotrode are examined with respect to the origin,evolution of equiaxed grain structure,morphology and the columnar to equiaxed transition.The origin of grains was analysed from three fundamental aspects that contribute to refinement(i)heterogeneous nucleation(ii)fragmentation of existing dendrites and(iii)grains produced from the colder surfaces(arising from mould walls or vibrating surfaces as wall crystals).A comparison of UST refinement with mechanical,low-frequency vibration,electric current pulse and magnetic field solidification of pure metals has also been provided to highlight the importance of the cold surfaces(sonotrode and mould wall)in influencing grain refinement.展开更多
The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the r...The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.展开更多
In this work,the mechanical properties and strengthening mechanisms induced by microstructural evolution in a rheo-extruded 5087 alloy processed via accumulative continuous extrusion forming(ACEF)were investigated.Ele...In this work,the mechanical properties and strengthening mechanisms induced by microstructural evolution in a rheo-extruded 5087 alloy processed via accumulative continuous extrusion forming(ACEF)were investigated.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)were utilized to characterize the microstructure of the alloy subjected to ACEF with various passes.The grain refinement caused by continuous dynamic recrystallization(CDRX)was discussed.The results demonstrated that after 3 passes of ACEF,there was a significant grain refinement effect on the alloy,and the average grain size decreased from 45.6μm to 2.5μm;the ultimate tensile strength(UTS)and yield strength(YS)of the alloy increased to 362.8 MPa and 234.6 MPa,respectively.Dislocation cells/walls generated during deformation promoted the formation of low angle grain boundaries(LAGBs).The accumulative strain accelerated the transformation of LAGBs to high angle grain boundaries(HAGBs).Dislocation pile-up enhanced the driving force of CDRX,and nano-sized Al_6(Mn,Fe)phases at the grain boundaries inhibited the growth of grains due to the pinning effect.Based on the quantitative estimation,dislocation strengthening and grain boundary strengthening dominated the enhancement in YS of the ACEFed alloy.展开更多
Grain refinement is critical to surpassing the bottlenecks of inherent hot tearing of high-strength aluminum alloys fabricated by additive manufacturing(AM).In this study,a synergistic grain-refining strategy includin...Grain refinement is critical to surpassing the bottlenecks of inherent hot tearing of high-strength aluminum alloys fabricated by additive manufacturing(AM).In this study,a synergistic grain-refining strategy including heterogeneous nucleation,solute-driven growth restriction and nanoparticle-induced growth restriction was introduced to control the microstructure of Al-Zn-Mg-Cu alloys during the laser powder bed fusion(LPBF)process.Crack-free Al-Zn-Mg-Cu alloys with significantly refined grains were safely fabricated via LPBF by coincorporation of Ti C and TiHparticles.In-situ L1-AlTi particles were produced to promote the heterogeneous nucleation.The grain growth was restricted by adding Ti solute,while introduced TiC nanoparticles(NPs)improved the density of heterogeneous nucleation sites and blocked grain growth physically.The resultant elimination of columnar grains and hot cracks in the(1 wt.%)TiC-and(0.8 wt.%)TiH-modified Al-Zn-Mg-Cu alloy resulted in excellent ultimate tensile strength(UTS)of 593±24 MPa,yield strength(YS)of 485±41 MPa and elongation(EL)of 10.0%±2.5%under the T6 condition.This study provides new insights into improving the grain microstructure and mechanical properties of high-strength aluminum alloys during LPBF.展开更多
Grain refinement is critical for fabricating high-quality Al-Si casting components in the application of automobile and aerospace industries,while the well-known Si-poisoning effect makes it difficult.Nbbased refiners...Grain refinement is critical for fabricating high-quality Al-Si casting components in the application of automobile and aerospace industries,while the well-known Si-poisoning effect makes it difficult.Nbbased refiners offer an effective method to refine Al-Si casting alloys,but their anti Si-poisoning capability is far from being understood.In this work,the grain refining mechanism and the anti Si-poisoning effect in the Al-10 Si/Al-5 Nb-B system were systematically investigated by combining transmission electron microscope,first-principles calculations,and thermodynamic calculations.It is revealed that NbB_(2)provides the main nucleation site in the Al-10 Si ingot inoculated by 0.1 wt.%Nb Al-5 Nb-B refiner.The exposed Nb atoms on the(0001)NbB_(2)and(1-100)NbB_(2)surface can be substituted by Al to form(Al,Nb)B_(2)intermedia layers.In addition,a layer of NbAl_(3)-like compound(NbAl_(3)')can cover the surface of NbB_(2)with the orientation relation of(1-100)[11-20]NbB_(2/)/(110)[110]NbAl_(3)'.Both of the(Al,Nb)B_(2)and NbAl_(3)'intermedia layers contribute to enhancing the nucleation potency of NbB_(2)particles.These discoveries provide fundamental insight to the grain refining mechanism of the Nb-B based refiners for Al-Si casting alloys and are expected to guide the future development of stronger refiners for Al-Si casting alloys.展开更多
The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the ...The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the mean grain size of AZ91D alloy was refined from 235.4μm to 52.5 μm at the one-half radius of the ingot. The morphology of primary crystal changed from a sixford symmetrical shape to a petallike shape, Mg-Sr-Al-Fe-Mn heterogeneous nucleating particles were observed at the grain centers and Sr solute atoms presented segregation along the grain boundaries. Grain refinement was facilitated by both the Mg-Sr-Al- Fe-Mn nucleating particles and the Sr solute atoms, and the former played a dominate role in the process.展开更多
The Al-5Ti-0.2C-based grain refiners with different contents of rare earth (RE) were successfully prepared via powder metallurgy and vacuum casting. The microstructural evolution has been studied by X-ray diffracti...The Al-5Ti-0.2C-based grain refiners with different contents of rare earth (RE) were successfully prepared via powder metallurgy and vacuum casting. The microstructural evolution has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the RE addition resulted in the formation of TiAl3/Ti2Al20RE core-shell structured primary particles, and the size of TiAl3 core decreased, while the thickness of Ti2Al20RE increased with increase of RE contents. As compared to Al-5Ti-0.2C grain refiner, the grain refining efficiency was gradually improved with increase of RE contents, which was mainly attributed to the TiAl3/Ti2Al20RE core-shell structured primary particles and insoluble TiC nuclei formed inα-Al matrix. The formation mechanism of core-shell structure was further investigated based on Ginstling-Brounstein model.展开更多
AM30 was inoculated by MgCO_(3) powder with different holding time.The influence of MgO decomposed by MgCO_(3)on the grain refinement effect was mainly discussed in the present study.Three sets of comparative samples ...AM30 was inoculated by MgCO_(3) powder with different holding time.The influence of MgO decomposed by MgCO_(3)on the grain refinement effect was mainly discussed in the present study.Three sets of comparative samples were prepared.They were AM30 alloy inoculated by MgO and pure Mg inoculated by MgO and MgCO_(3).The possible nucleating particles were observed and analyzed by EPMA and SEM.AM30 alloy could be effectively refined by either MgCO_(3)or MgO inoculation.Grain refining efficiency and fading effect of MgO inoculation were better than those of MgCO_(3) inoculation.However,pure Mg could not be refined by these two inoculants.Al is an indispensable element to determine the grain refinement of Mg alloys inoculated by either MgCO_(3)or MgO.MgO should not be the effective substrates forα-Mg phase.A novel grain refining mechanism of MgCO_(3) inoculation on AM30 alloy was proposed by combining experimental results with theoretical calculation,i.e.,MgAl_(2)O_(4) should be the potent nuclei ofα-Mg grain for the AM30 alloy in addition to Al_(4)C_(3).展开更多
基金the National Natural Science Foundation of China(No.51975593)the Hunan Provincial Natural Science Foundation of China(No.2020JJ4113)the Science and Technology Innovation Planning Project of Hunan Province(No.2019XK2301)。
文摘The uniform refinement mechanisms and methods of deformed mixed and coarse grains inside a solution-treatment Ni-based superalloy during two-stage annealing treatment have been investigated.The two-stage heat treatment experiments include an aging annealing treatment(AT)and a subsequent recrystallization annealing treatment(RT).The object of AT is to precipitate someδphases and consume part of storage energy to inhibit the grain growth during RT,while the RT is to refine mixed and coarse grains by recrystallization.It can be found that the recrystallization grains will quickly grow up to a large size when the AT time is too low or the RT temperature is too high,while the deformed coarse grains cannot be eliminated when the AT time is too long or the RT temperature is too low.In addition,the mixed microstructure composed of some abnormal coarse recrystallization grains(ACRGs)and a large number of fine grains can be observed in the annealed specimen when the AT time is 3 h and RT temperature is 980℃.The phenomenon attributes to the uneven distribution ofδphase resulted from the heterogeneous deformation energy when the AT time is too short.In the regions with a large number ofδphases,the recrystallization nucleation rate is promoted and the growth of grains is limited,which results in fine grains.However,in the regions with fewδphases,the recrystallization grains around grain boundaries can easily grow up,and the new recrystallization nucleus is difficult to form inside grain,which leads to ACRGs.Thus,in order to obtain uniform and fine annealed microstructure,it is a prerequisite to precipitate even-distributedδphase by choosing a suitable AT time,such as 12 h.Moreover,a relative high RT temperature is also needed to promote the recrystallization nucleation aroundδphase.The optimal annealing parameters range for uniformly refining mixed crystal can be summarized as:900℃×12 h+990℃×(40-60 min)and 900℃×12 h+1000℃×(10-15 min).
基金the National Natural Science Foundation of China(51974155)the Outstanding Young Scientific and Technological Talents Project of University of Science and Technology Liaoning(2023YQ07)+4 种基金the University of Science and Technology Liaoning Young Foundation(2018QN06)National Natural Science Foundation of China(51774178)the National Key Research and Development Program(2021YFB3702005)the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)the Liaoning Provincial Department of Education Basic Research Projects for Universities(JYTQN2023242).
文摘Herein,the effect of direct current(DC)attached the mold on refining the microstructure and alleviating the central segregation of a tin–bismuth(Sn–10 wt.%Bi)alloy ingot during the solidification process has been investigated.The experiment used a self-made device,which can achieve the effect of refining the solidified structure and alleviate the segregation of the metal casting.Numerical simulations were performed to calculate the Lorentz force,Joule heating and induced melt vortex flow for the magneto-hydrodynamic case.Our results show that the maximum velocity of the global electro-vortex reached 0.017 m s^(–1).The DC-induced electro-vortex was found to be the primary reason of refining the equiaxed grain and alleviating the segregation of theβ-Sn crystal boundary.The grain refining effect observed in these experiments can be solely attributed to the forced melt flow driven by the Lorentz force.DC field attached the mold can lead to grain refinement and alleviate the segregation of the ingot via a global vortex.The technology can be applied not only to opened molds,but also toward improving the quality in closed molds.
基金Project supported by the Natural Science Foundation of Hunan Province(2024JJ4056)the Key Project of Guangxi Zhuang Autonomous Region(AB22080089)the Government of Chongzuo,Guangxi Zhuang Autonomous Region(FA20210716)。
文摘The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification process of the Al—2Sc alloy controlled by a novel PMS using NdFeB permanent magnets under various rotation speeds(0,50,100 and 150 r/min).The simulated results reveal that the maximum electromagnetic force increases proportionally from 4.14 to 12.39 kN/m^(3)and the maximum tangential velocity increases from 0.13 to 0.36 m/s when the rotation speed of PMS enhances from 50 to 150 r/min in the ingot melt.Besides,the experimental results demonstrate that PMS can achieve a uniform distribution of blocky Al_(3)Sc precipitated phase in the longitudinal direction under the impact of a forced fluid flow.Moreover,increasing rotation speed of PMS is beneficial to refining aluminum grain size significantly and decreasing the texture intensity in the alloy.In addition,the Brinell hardness of Al-2Sc alloy is increased by 33%to 27.8 HB and the tensile strength is enhanced by 34%-128.2 MPa,due to the improved distribution of the strengthening Al_(3)SC phase and the grain refinement of Al matrix under the impact of PMS.This work provides an effective application of NdFeB permanent magnets in the metal cast field.
基金Project supported by Tsinghua-Wuxi Science Foundation, China
文摘Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of Al-7Si. It is found that the number and the settlement of AlB2 particles in the melt all have effect on the grain refining efficiency. On the basis of experiments and theoretical analysis, a new grain refinement mechanism was proposed to explain the grain refinement action of Al-3B on hypoeutectic Al-Si alloys. The formation of 'Al-AlB2' shell structure is the direct reason for grain refinement and the undissolved AlB2 particles is the indirect nucleating base for subsequent α(Al) phase.
基金Project(12511075)supported by the Foundation of Heilongjiang Education Committee,China
文摘To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.
基金Project (09C26279200863) supported by Technology Innovation Fund Project of High-tech Small and Medium Enterprises,Ministry of Science and Technology of ChinaProject (BA2011084) supported by Special Fund Project on Science and Technology Achievement Transformation of Jiangsu Province,China
文摘Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses.
基金Project(DUT15JJ(G)01) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2009AA03Z525) supported by the National High-tech Research and Development Program of China
文摘A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed crystal with a diameter of (110-a:17) ~tm. The results indicate that A14C3 and TiC particle cluster, rather than a single particle, plays an important role in the refining process. Compared with the simplex smooth nucleating substrate, concave regions on the particle cluster provide easier route for the transformation from liquid Mg atoms to stable nucleus. Nucleus with a small size can also reach the critical nucleation radius when they attach on the concave regions of the substrate. A14C3 and TiC particle clusters thus become more favorable nucleating substrate for a-Mg grains.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea Program(No.RS-2025-02603127,Innovation Research Center for Zero-carbon Fuel Gas Turbine Design,Manufacture,and Safety)。
文摘Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under uniaxial tension along rolling direction(RD)and transverse direction(TD)at-50,25,50,and 150℃.Results reveal a transition from high strength with limited elongation at-50℃ to significant softening and maximum ductility at 150℃.TD samples consistently showed 2%-6%higher strength than RD;however,this yield anisotropy diminished at 150℃ due to the shift from twinning to thermally activated slip and recovery.Fractography indicated a change from semi-brittle to fully ductile fracture with increasing temperature.Electron backscattered diffraction(EBSD)analysis confirmed twinning-driven grain refinement at low temperatures,while deformation at high temperatures involved grain elongation along shear zones,enabling greater strain accommodation before material failure.
基金supported by the National Natural Science Foundation of China (Nos.51871069 and 52071093)the Fundamental Research Funds for the Central Universities (No.3072020CF1009)+2 种基金the Science and Technology Innovation Major Project of Ningbo City, China (No.2019B10103)the Domain Foundation of Equipment Advance Research of 13th Five-year Plan (No.61409220118)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (No.RERU2020008)。
文摘Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously.Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility.In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced.Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence.This review can be used as a reference for further development of high-performance fine-grained Mg alloys.
文摘In this study, a series of tests were conducted by using aluminum-based alloy to determine the formation of grain refining structure based on the ultrasonic vibration (UV). Furthermore, the simulation test and effect of ultrasonic output power were studied using ammonium chloride. Finally, the mechanism of grain refinement was investigated. The results show that: (1) By applying the UV to aluminum-base alloy, the grain refining rate of ingots tended to increase with the increase of the output value of UV. (2) It was confirmed that time from after the pour to the beginning of crystallization as well as cloudiness tended to decrease with increasing the ultrasonic power value of UV. Moreover, it can be seen from each cooling curve that a uniform temperature gradient existed in the melt as the power of UV increased, that made the melt strongly stirred. (3) It was also considered that the grain refining effect of ingots, which was observed from the simulation tests, resulted from nucleation action and stirring division action by applying the UV.
基金supported by Beijing Municipal Natural Science Foundation(KZ20122100050008)National Basic Research Program of China(2012CB6198503)
文摘Al-Ti-B-Er refiner was successfully prepared by CR (contact reaction process), a process based on SHS (self propagating high-temperature synthesis). The microstructure of the alloy was studied by optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometry. The results showed that Al-Ti-B-Er alloy was composed of α-Al, block-like TiAl3 and flocked TiB2. Compared with Al-Ti-B refiner, formation of TiAlEr compounds, Er modified the morphology of TiAl3 phase, and dispersed the TiB2 and TiAl3. An excellent grain refining performance was obtained when adding 1 wt.% Al-Ti-B-Er in Al-10Zn-1.9Mg-1.6Cu-0.12Zr alloy, the average grain size was about 40 μm. The refinement mechanism of Al-Ti-B-Er was also discussed. Er changed the morphology of TiAl3, TiB2 phase, the refiner would be more efficient. The decomposition of TiAlEr compounds which released Er refrained the growth of TiAl3 and made TiB2 difficult to aggregate or deposit, therefore resulted in more particles being efficient nucleation substrate.
文摘Magnesium is the lightest constructional metal,which makes it an important material for different applications like automotive,transportation,aviation and aerospace.There are several studies about developing properties of existing Mg alloys and introducing new alloy systems to industrial producers.An important way to improve properties of metallic materials is to decrease grain size that results almost in increasing all kind of properties of the material.This review paper aims to summarize the literature about grain refining of magnesium alloys.The text is consisting of three sections,which focused on the(1)grain refining methods used in the past,which are not used today,(2)grain refining methods currently being used in the industry and(3)novel and newly developed methods that may find usage in the industry in future.Before explaining grain refining methods of magnesium alloys a general summary about grain refinement of metals is also provided.
基金funding support provided by the Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices IH150100024the ARC Discovery grant DP140100702ARC linkage project LP150100950。
文摘The formation of fine,non-dendritic equiaxed grains throughout a casting without the addition of refiners(i.e.independent of alloy chemistry),is made possible by using ultrasonic,magnetic or pulsed magnetic and electric current pulse techniques.The dominant mechanisms proposed for the grain refinement produced during the application of an external field are cavitation phenomena assisted nucleation or fragmentation of dendrites(ultrasonic field),wall crystals arising from the cold surface of the mould(electric current pulse,magnetic and pulsed magnetic fields).In all these cases fluid flow provides an additional contribution(e.g.reduced temperature gradients,growth rate and remelting of dendrites)to maintaining an equiaxed grain structure.The origin of equiaxed grains under an external field also depends on the casting conditions(volume and shape of casting)and the type of alloy other than the mechanisms specific to a particular technique.The current work aims to provide a detailed understanding of the various factors and mechanisms that influence the grain refinement achieved during the solidification of pure metals(magnesium and zinc)subjected to Ultra Sonic Treatment(UST).The role of the temperature range of UST application,time duration and an unpreheated sonotrode are examined with respect to the origin,evolution of equiaxed grain structure,morphology and the columnar to equiaxed transition.The origin of grains was analysed from three fundamental aspects that contribute to refinement(i)heterogeneous nucleation(ii)fragmentation of existing dendrites and(iii)grains produced from the colder surfaces(arising from mould walls or vibrating surfaces as wall crystals).A comparison of UST refinement with mechanical,low-frequency vibration,electric current pulse and magnetic field solidification of pure metals has also been provided to highlight the importance of the cold surfaces(sonotrode and mould wall)in influencing grain refinement.
文摘The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.
基金supported by the National Key Research and Development Program of China[No.2018YFB2001800]the National Natural Science Foundation of China(No.51871184)+1 种基金the Dalian High-level Talents Innovation Support Program(No.2021RD06)the Dongguan Graduate Workstation Project(No.20201900300032)。
文摘In this work,the mechanical properties and strengthening mechanisms induced by microstructural evolution in a rheo-extruded 5087 alloy processed via accumulative continuous extrusion forming(ACEF)were investigated.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)were utilized to characterize the microstructure of the alloy subjected to ACEF with various passes.The grain refinement caused by continuous dynamic recrystallization(CDRX)was discussed.The results demonstrated that after 3 passes of ACEF,there was a significant grain refinement effect on the alloy,and the average grain size decreased from 45.6μm to 2.5μm;the ultimate tensile strength(UTS)and yield strength(YS)of the alloy increased to 362.8 MPa and 234.6 MPa,respectively.Dislocation cells/walls generated during deformation promoted the formation of low angle grain boundaries(LAGBs).The accumulative strain accelerated the transformation of LAGBs to high angle grain boundaries(HAGBs).Dislocation pile-up enhanced the driving force of CDRX,and nano-sized Al_6(Mn,Fe)phases at the grain boundaries inhibited the growth of grains due to the pinning effect.Based on the quantitative estimation,dislocation strengthening and grain boundary strengthening dominated the enhancement in YS of the ACEFed alloy.
基金the Research and Development Program Project in Key Areas of Guangdong Province,China(No.2019B090907001)the Major Special Project for Science and Technology Program of Guangdong Province,China(No.2014B010129002)。
文摘Grain refinement is critical to surpassing the bottlenecks of inherent hot tearing of high-strength aluminum alloys fabricated by additive manufacturing(AM).In this study,a synergistic grain-refining strategy including heterogeneous nucleation,solute-driven growth restriction and nanoparticle-induced growth restriction was introduced to control the microstructure of Al-Zn-Mg-Cu alloys during the laser powder bed fusion(LPBF)process.Crack-free Al-Zn-Mg-Cu alloys with significantly refined grains were safely fabricated via LPBF by coincorporation of Ti C and TiHparticles.In-situ L1-AlTi particles were produced to promote the heterogeneous nucleation.The grain growth was restricted by adding Ti solute,while introduced TiC nanoparticles(NPs)improved the density of heterogeneous nucleation sites and blocked grain growth physically.The resultant elimination of columnar grains and hot cracks in the(1 wt.%)TiC-and(0.8 wt.%)TiH-modified Al-Zn-Mg-Cu alloy resulted in excellent ultimate tensile strength(UTS)of 593±24 MPa,yield strength(YS)of 485±41 MPa and elongation(EL)of 10.0%±2.5%under the T6 condition.This study provides new insights into improving the grain microstructure and mechanical properties of high-strength aluminum alloys during LPBF.
基金supported by the National Natural Science Foundation of China(51871138)Science and Technology Commission of Shanghai Municipality(19010500400)the 111 project(No.D16002)。
文摘Grain refinement is critical for fabricating high-quality Al-Si casting components in the application of automobile and aerospace industries,while the well-known Si-poisoning effect makes it difficult.Nbbased refiners offer an effective method to refine Al-Si casting alloys,but their anti Si-poisoning capability is far from being understood.In this work,the grain refining mechanism and the anti Si-poisoning effect in the Al-10 Si/Al-5 Nb-B system were systematically investigated by combining transmission electron microscope,first-principles calculations,and thermodynamic calculations.It is revealed that NbB_(2)provides the main nucleation site in the Al-10 Si ingot inoculated by 0.1 wt.%Nb Al-5 Nb-B refiner.The exposed Nb atoms on the(0001)NbB_(2)and(1-100)NbB_(2)surface can be substituted by Al to form(Al,Nb)B_(2)intermedia layers.In addition,a layer of NbAl_(3)-like compound(NbAl_(3)')can cover the surface of NbB_(2)with the orientation relation of(1-100)[11-20]NbB_(2/)/(110)[110]NbAl_(3)'.Both of the(Al,Nb)B_(2)and NbAl_(3)'intermedia layers contribute to enhancing the nucleation potency of NbB_(2)particles.These discoveries provide fundamental insight to the grain refining mechanism of the Nb-B based refiners for Al-Si casting alloys and are expected to guide the future development of stronger refiners for Al-Si casting alloys.
基金Funded by the National Natural Science Foundation of China (No. 50171037) Key Project of Science and Technology Research of Ministry of Education of China (No. 01105)
文摘The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the mean grain size of AZ91D alloy was refined from 235.4μm to 52.5 μm at the one-half radius of the ingot. The morphology of primary crystal changed from a sixford symmetrical shape to a petallike shape, Mg-Sr-Al-Fe-Mn heterogeneous nucleating particles were observed at the grain centers and Sr solute atoms presented segregation along the grain boundaries. Grain refinement was facilitated by both the Mg-Sr-Al- Fe-Mn nucleating particles and the Sr solute atoms, and the former played a dominate role in the process.
基金Project supported by National High Technology Research and Development Program of China(2013AA031001)the National Basic Research Program of China(2012CB619503)International Science&Technology Cooperation Program of China(2012DFA50630)
文摘The Al-5Ti-0.2C-based grain refiners with different contents of rare earth (RE) were successfully prepared via powder metallurgy and vacuum casting. The microstructural evolution has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the RE addition resulted in the formation of TiAl3/Ti2Al20RE core-shell structured primary particles, and the size of TiAl3 core decreased, while the thickness of Ti2Al20RE increased with increase of RE contents. As compared to Al-5Ti-0.2C grain refiner, the grain refining efficiency was gradually improved with increase of RE contents, which was mainly attributed to the TiAl3/Ti2Al20RE core-shell structured primary particles and insoluble TiC nuclei formed inα-Al matrix. The formation mechanism of core-shell structure was further investigated based on Ginstling-Brounstein model.
基金the National Natural Science Foundation of China(51574127)Natural Science Foundation of Guangdong Province(2014A030313221).
文摘AM30 was inoculated by MgCO_(3) powder with different holding time.The influence of MgO decomposed by MgCO_(3)on the grain refinement effect was mainly discussed in the present study.Three sets of comparative samples were prepared.They were AM30 alloy inoculated by MgO and pure Mg inoculated by MgO and MgCO_(3).The possible nucleating particles were observed and analyzed by EPMA and SEM.AM30 alloy could be effectively refined by either MgCO_(3)or MgO inoculation.Grain refining efficiency and fading effect of MgO inoculation were better than those of MgCO_(3) inoculation.However,pure Mg could not be refined by these two inoculants.Al is an indispensable element to determine the grain refinement of Mg alloys inoculated by either MgCO_(3)or MgO.MgO should not be the effective substrates forα-Mg phase.A novel grain refining mechanism of MgCO_(3) inoculation on AM30 alloy was proposed by combining experimental results with theoretical calculation,i.e.,MgAl_(2)O_(4) should be the potent nuclei ofα-Mg grain for the AM30 alloy in addition to Al_(4)C_(3).