期刊文献+
共找到3,547篇文章
< 1 2 178 >
每页显示 20 50 100
Time-Varying Formation Tracking Control of Heterogeneous Multi-Agent Systems With Intermittent Communications and Directed Switching Networks
1
作者 Yuhan Wang Zhuping Wang +1 位作者 Hao Zhang Huaicheng Yan 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期294-296,共3页
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so... Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems. 展开更多
关键词 switched systems time varying formation tracking directed switching networks heterogeneous multi agent systems intermittent communications exponential stability
在线阅读 下载PDF
Effective convolution mixed Transformer Siamese network for robust visual tracking
2
作者 Lin Chen Yungang Liu Yuan Wang 《Control Theory and Technology》 2025年第2期221-236,共16页
Siamese tracking algorithms usually take convolutional neural networks(CNNs)as feature extractors owing to their capability of extracting deep discriminative features.However,the convolution kernels in CNNs have limit... Siamese tracking algorithms usually take convolutional neural networks(CNNs)as feature extractors owing to their capability of extracting deep discriminative features.However,the convolution kernels in CNNs have limited receptive fields,making it difficult to capture global feature dependencies which is important for object detection,especially when the target undergoes large-scale variations or movement.In view of this,we develop a novel network called effective convolution mixed Transformer Siamese network(SiamCMT)for visual tracking,which integrates CNN-based and Transformer-based architectures to capture both local information and long-range dependencies.Specifically,we design a Transformer-based module named lightweight multi-head attention(LWMHA)which can be flexibly embedded into stage-wise CNNs and improve the network’s representation ability.Additionally,we introduce a stage-wise feature aggregation mechanism which integrates features learned from multiple stages.By leveraging both location and semantic information,this mechanism helps the SiamCMT to better locate and find the target.Moreover,to distinguish the contribution of different channels,a channel-wise attention mechanism is introduced to enhance the important channels and suppress the others.Extensive experiments on seven challenging benchmarks,i.e.,OTB2015,UAV123,GOT10K,LaSOT,DTB70,UAVTrack112_L,and VOT2018,demonstrate the effectiveness of the proposed algorithm.Specially,the proposed method outperforms the baseline by 3.5%and 3.1%in terms of precision and success rates with a real-time speed of 59.77 FPS on UAV123. 展开更多
关键词 Visual tracking Siamese network TRANSFORMER Feature aggregation Channel-wise attention
原文传递
Sensor Scheduling for Target Tracking in Networks of Active Sensors 被引量:7
3
作者 XIAO Wen-Dong WU Jian-Kang +1 位作者 XIE Li-Hua DONG Liang 《自动化学报》 EI CSCD 北大核心 2006年第6期922-928,共7页
Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two tim... Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed. 展开更多
关键词 Wireless sensor network sensor scheduling target tracking active sensor
在线阅读 下载PDF
Energy-efficient adaptive sensor scheduling for target tracking in wireless sensor networks 被引量:9
4
作者 Wendong XIAO Sen ZHANG +1 位作者 Jianyong LIN Chen Khong THAM 《控制理论与应用(英文版)》 EI 2010年第1期86-92,共7页
Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the taskin... Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy. 展开更多
关键词 Wireless sensor network Target tracking Sensor scheduling Extended Kalman filter Energy efficiency.
在线阅读 下载PDF
Neural Network Adaptive Hierarchical Sliding Mode Control for the Trajectory Tracking of a Tendon-Driven Manipulator
5
作者 Yudong Zhang Leiying He +2 位作者 Jianneng Chen Bo Yan Chuanyu Wu 《Chinese Journal of Mechanical Engineering》 2025年第2期295-314,共20页
Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory ... Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory tracking control of the manipulator.This paper proposes the radial basis function neural network adaptive hierarchical sliding mode control(RBFNNA-HSMC)method,which combines the dynamic model of the elastic tendon-driven manipulator(ETDM)with radial basis neural network adaptive control and hierarchical sliding mode control technology.The aim is to achieve trajectory tracking control of ETDM even under conditions of model inaccuracy and disturbance.The Lyapunov stability theory demonstrates the stability of the proposed RBFNNA-HSM controller.In order to assess the effectiveness and adaptability of the proposed control method,simulations and experiments were performed on a two-DOF ETDM.The RBFNNA-HSM method shows superior tracking accuracy compared to traditional modelbased HSM control.The experiment shows that the maximum tracking error for ETDM double-joint trajectory tracking is below 2.593×10-3rad and 1.624×10-3rad,respectively. 展开更多
关键词 Elastic tendon-driven manipulator Flexible joint Hierarchical sliding mode control Neural network adaptive control tracking control
在线阅读 下载PDF
Detection and Tracking of a UAV Based on Low-Frequency Communication Network
6
作者 Hongmei Shi Yifan Zhou +1 位作者 Mengxin Yang Dan Zeng 《Journal of Beijing Institute of Technology》 2025年第3期231-242,共12页
When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,includin... When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,including high vulnerability to target occlusion and shape variations,as well as pronounced false alarms and missed detections in low signal-to-noise ratio(SNR)envi-ronments.To address these issues,this paper proposes a UAV detection and tracking algorithm based on a low-frequency communication network.The accuracy and effectiveness of the algorithm are validated through simulation experiments using field-measured point cloud data.Additionally,the key parameters of the algorithm are optimized through a process of selection and comparison,thereby improving the algorithm's precision.The experimental results show that the improved algo-rithm can significantly enhance the detection and tracking performance of the UAV under high clutter density conditions,effectively reduce the false alarm rate and markedly improve overall tracking performance metrics. 展开更多
关键词 unmanned aerial vehicl(UAV)detection and tracking low-frequency communication network field-measurement data
在线阅读 下载PDF
Prediction-based protocol for mobile target tracking in wireless sensor networks 被引量:3
7
作者 Liang Xue Zhixin Liu Xinping Guan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期347-352,共6页
Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce... Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce energy waste and response time, an improved predictive algorithm–exponential smoothing predictive algorithm (ESPA) is presented. With the aid of an additive proportion and differential (PD) controller, ESPA decreases the system predictive delay effectively. As a recovery mechanism, an optimal searching radius (OSR) algorithm is applied to calculate the optimal radius of the recovery zone. The simulation results validate that the proposed EDPT protocol performes better in terms of track failed ratio, energy waste ratio and enlarged sensing nodes ratio, respectively. 展开更多
关键词 wireless sensor network target tracking protocol predictive algorithm recovery mechanism.
在线阅读 下载PDF
Target Tracking and Obstacle Avoidance for Multi-agent Networks with Input Constraints 被引量:3
8
作者 Jing Yan Xin-Ping Guan +1 位作者 Xiao-Yuan Luo Fu-Xiao Tan 《International Journal of Automation and computing》 EI 2011年第1期46-53,共8页
In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents tr... In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach. 展开更多
关键词 Target tracking obstacle avoidance multi-agent networks potential function optimal control.
在线阅读 下载PDF
Event-triggered cooperative target tracking in wireless sensor networks 被引量:3
9
作者 Lu Kelin Zhou Rui Li Hao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1326-1334,共9页
Since the issues of low communication bandwidth supply and limited battery capacity are very crucial for wireless sensor networks,this paper focuses on the problem of event-triggered cooperative target tracking based ... Since the issues of low communication bandwidth supply and limited battery capacity are very crucial for wireless sensor networks,this paper focuses on the problem of event-triggered cooperative target tracking based on set-membership information filtering.We study some fundamental properties of the set-membership information filter with multiple sensor measurements.First,a sufficient condition is derived for the set-membership information filter,under which the boundedness of the outer ellipsoidal approximation set of the estimation means is guaranteed.Second,the equivalence property between the parallel and sequential versions of the setmembership information filter is presented.Finally,the results are applied to a 1D eventtriggered target tracking scenario in which the negative information is exploited in the sense that the measurements that do not satisfy the triggering conditions are modelled as set-membership measurements.The tracking performance of the proposed method is validated with extensive Monte Carlo simulations. 展开更多
关键词 Event-triggered Information filter Set-membership Target tracking Wireless sensor networks
原文传递
Prediction-based energy-efficient target tracking protocol in wireless sensor networks 被引量:3
10
作者 BHUIYAN M.Z.A. 王国军 +1 位作者 张力 彭勇 《Journal of Central South University》 SCIE EI CAS 2010年第2期340-348,共9页
A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the... A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations. 展开更多
关键词 wireless sensor networks target tracking wakeup mechanism face-aware routing energy efficiency
在线阅读 下载PDF
Sensor planning method for visual tracking in 3D camera networks 被引量:1
11
作者 Anlong Ming Xin Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期1107-1116,共10页
Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks a... Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks are usually simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with different height and action radiuses, but also the observed objects are with 3D features(i.e., height). This paper presents a sensor planning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and detect people traversing a region. The problem of sensor planning consists of three issues:(i) how to model the 3D heterogeneous cameras;(ii) how to rank the visibility, which ensures that the object of interest is visible in a camera's field of view;(iii) how to reconfigure the 3D viewing orientations of the cameras. This paper studies the geometric properties of 3D heterogeneous camera networks and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Finally, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strategies. 展开更多
关键词 camera model sensor planning camera network visual tracking
在线阅读 下载PDF
Multiple Targets Tracking Using Kinematics in Wireless Sensor Networks 被引量:4
12
作者 Akond Ashfaque Ur Rahman Atiqul Islam Mollah Mahmuda Naznin 《Wireless Sensor Network》 2011年第8期263-274,共12页
Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’... Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’ movement in different directions, targets’ speed variations and frequent connectivity failures of low powered sensor nodes. If all the low-powered sensor nodes are kept active in tracking multiple targets coming from different directions of the network, there is high probability of network failure due to wastage of power. It would be more realistic if the tracking area can be reduced so that less number of sensor nodes will be active and therefore, the network will consume less energy. Tracking area can be reduced by using the target’s kinematics. There is almost no method to track multiple targets based on targets’ kinematics. In our paper, we propose a distributed tracking method for tracking multiple targets considering targets’ kinematics. We simulate our method by a sensor network simulator OMNeT++ and empirical results state that our proposed methodology outperforms traditional tracking algorithms. 展开更多
关键词 WIRELESS SENSOR network Multiple TARGETS tracking TARGET KINEMATICS
暂未订购
Toward Coordination Control of Multiple Fish-Like Robots:Real-Time Vision-Based Pose Estimation and Tracking via Deep Neural Networks 被引量:2
13
作者 Tianhao Zhang Jiuhong Xiao +2 位作者 Liang Li Chen Wang Guangming Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1964-1976,共13页
Controlling multiple multi-joint fish-like robots has long captivated the attention of engineers and biologists,for which a fundamental but challenging topic is to robustly track the postures of the individuals in rea... Controlling multiple multi-joint fish-like robots has long captivated the attention of engineers and biologists,for which a fundamental but challenging topic is to robustly track the postures of the individuals in real time.This requires detecting multiple robots,estimating multi-joint postures,and tracking identities,as well as processing fast in real time.To the best of our knowledge,this challenge has not been tackled in the previous studies.In this paper,to precisely track the planar postures of multiple swimming multi-joint fish-like robots in real time,we propose a novel deep neural network-based method,named TAB-IOL.Its TAB part fuses the top-down and bottom-up approaches for vision-based pose estimation,while the IOL part with long short-term memory considers the motion constraints among joints for precise pose tracking.The satisfying performance of our TAB-IOL is verified by testing on a group of freely swimming fish-like robots in various scenarios with strong disturbances and by a deed comparison of accuracy,speed,and robustness with most state-of-the-art algorithms.Further,based on the precise pose estimation and tracking realized by our TAB-IOL,several formation control experiments are conducted for the group of fish-like robots.The results clearly demonstrate that our TAB-IOL lays a solid foundation for the coordination control of multiple fish-like robots in a real working environment.We believe our proposed method will facilitate the growth and development of related fields. 展开更多
关键词 Deep neural networks formation control multiple fish-like robots pose estimation pose tracking
在线阅读 下载PDF
COLLABORATIVE TRACKING VIA PARTICLE FILTER IN WIRELESS SENSOR NETWORKS 被引量:2
14
作者 Yan Zhenya Zheng Baoyu +1 位作者 Xu Li Li Shitang 《Journal of Electronics(China)》 2008年第3期311-318,共8页
Target tracking is one of the main applications of wireless sensor networks. Optimized computation and energy dissipation are critical requirements to save the limited resource of the sensor nodes. A framework and ana... Target tracking is one of the main applications of wireless sensor networks. Optimized computation and energy dissipation are critical requirements to save the limited resource of the sensor nodes. A framework and analysis for collaborative tracking via particle filter are presented in this paper. Collaborative tracking is implemented through sensor selection, and results of tracking are propagated among sensor nodes. In order to save communication resources, a new Gaussian sum particle filter, called Gaussian sum quasi particle filter, to perform the target tracking is presented, in which only mean and covariance of mixands need to be communicated. Based on the Gaussian sum quasi particle filter, a sensor selection criterion is proposed, which is computationally much simpler than other sensor selection criterions. Simulation results show that the proposed method works well for target tracking. 展开更多
关键词 Collaborative tracking Wireless sensor network Sensor selection Particle filter
在线阅读 下载PDF
Target tracking method of Siamese networks based on the broad learning system 被引量:1
15
作者 Dan Zhang C.L.Philip Chen +2 位作者 Tieshan Li Yi Zuo Nguyen Quang Duy 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期1043-1057,共15页
Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occ... Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occlusion,loss,scale variation,background clutter,illumination variation,etc.,which bring great challenges to realize accurate and real‐time tracking.Tracking based on Siamese networks promotes the application of deep learning in the field of target tracking,ensuring both accuracy and real‐time performance.However,due to its offline training,it is difficult to deal with the fast motion,serious occlusion,loss and deformation of the target during tracking.Therefore,it is very helpful to improve the performance of the Siamese networks by learning new features of the target quickly and updating the target position in time online.The broad learning system(BLS)has a simple network structure,high learning efficiency,and strong feature learning ability.Aiming at the problems of Siamese networks and the characteristics of BLS,a target tracking method based on BLS is proposed.The method combines offline training with fast online learning of new features,which not only adopts the powerful feature representation ability of deep learning,but also skillfully uses the BLS for re‐learning and re‐detection.The broad re‐learning information is used for re‐detection when the target tracking appears serious occlusion and so on,so as to change the selection of the Siamese networks search area,solve the problem that the search range cannot meet the fast motion of the target,and improve the adaptability.Experimental results show that the proposed method achieves good results on three challenging datasets and improves the performance of the basic algorithm in difficult scenarios. 展开更多
关键词 broad learning system siamese network target tracking
在线阅读 下载PDF
A new energy efficient management approach for wireless sensor networks in target tracking 被引量:1
16
作者 Ce Pang Gong-guo Xu +1 位作者 Gan-lin Shan Yun-pu Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期932-947,共16页
This paper mainly studied the problem of energy conserving in wireless sensor networks for target tracking in defensing combats. Firstly, the structures of wireless sensor nodes and networks were illustrated;Secondly,... This paper mainly studied the problem of energy conserving in wireless sensor networks for target tracking in defensing combats. Firstly, the structures of wireless sensor nodes and networks were illustrated;Secondly, the analysis of existing energy consuming in the sensing layer and its calculation method were provided to build the energy conserving objective function;What’s more, the other two indicators in target tracking, including target detection probability and tracking accuracy, were combined to be regarded as the constraints of the energy conserving objective function. Fourthly, the three energy conserving approaches, containing optimizing the management scheme, prolonging the time interval between two adjacent observations, and transmitting the observations selectively, were introduced;In addition, the improved lion algorithm combined with the Logistic chaos sequence was proposed to obtain sensor management schemes. Finally, simulations had been made to prove the effectiveness of the proposed methods and algorithm. 展开更多
关键词 Wireless sensor networks Target searching Target tracking Energy efficiency Lion algorithm
在线阅读 下载PDF
Interference Alignment Based on Subspace Tracking in MIMO Cognitive Networks with Multiple Primary Users 被引量:1
17
作者 XIE Xianzhong XIONG Zebo 《China Communications》 SCIE CSCD 2014年第A01期164-170,共7页
The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-S... The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-ST IA is also got. Futherly, IA scheme of secondary network and IA scheme of primary network are given respectively without assuming a priori knowledge of interference covariance matrices. Moreover, the paper analyses the computational complexity of FDPM-ST IA. Simulation results and theoretical calculations show that the proposed algorithm can achieve higher sum rate with lower computational complexity. 展开更多
关键词 MIMO cognitive networks multiple primary users subspace tracking interference alignment sum rate computational complexity
在线阅读 下载PDF
Compressing Information of Target Tracking in Wireless Sensor Networks 被引量:1
18
作者 Jianzhong Li Qianqian Ren 《Wireless Sensor Network》 2011年第2期73-81,共9页
Target tracking is a well studied topic in wireless sensor networks. It is a procedure that nodes in the network collaborate in detecting targets and transmitting their information to the base-station continuously, wh... Target tracking is a well studied topic in wireless sensor networks. It is a procedure that nodes in the network collaborate in detecting targets and transmitting their information to the base-station continuously, which leads to data implosion and redundancy. To reduce traffic load of the network, a data compressing based target tracking protocol is proposed in this work. It first incorporates a clustering based data gather method to group sensor nodes into clusters. Then a novel threshold technique with bounded error is proposed to exploit the spatial correlation of sensed data and compress the data in the same cluster. Finally, the compact data presentations are transmitted to the base-station for targets localization. We evaluate our approach with a comprehensive set of simulations. It can be concluded that the proposed method yields excellent performance in energy savings and tracking quality. 展开更多
关键词 WIRELESS SENSOR networks TARGET tracking Compressing
暂未订购
Target Tracking with QoS Support in Large Wireless Sensor Networks 被引量:1
19
作者 Ghasem Naddafzadeh SHIRAZI Peijie WANG +1 位作者 Xiangxu DONG Chen Khong THAM 《Wireless Sensor Network》 2009年第5期370-382,共13页
Quality of Service (QoS) is important in the application of target tracking in wireless sensor networks (WSNs). When a target appears, it will trigger an event from one or more sensors. A target can only be accurately... Quality of Service (QoS) is important in the application of target tracking in wireless sensor networks (WSNs). When a target appears, it will trigger an event from one or more sensors. A target can only be accurately detected if a certain number of event packets are received by the sink in a predetermined detection time interval. In this paper, we propose a buffer management scheme based on event ordering to achieve QoS. We also propose a directional QoS-aware routing protocol (DQRP) for the dissemination of the event ordering list. After the dissemination, a priority queue buffer management scheme is used to ensure QoS. Our buffer management scheme works in conjunction with DQRP to ensure accurate as well as energy-efficient target detection in the presence of multiple targets. The novelty of our network architecture is that a distributed admission control scheme is implemented on each node based on a geographic routing algorithm. In our scenario, a target can only be accurately detected if a certain number of event packets are received by the sink in a predetermined detection time interval. Our main performance metric is the number of targets/events being detected. Our protocol maximizes the number of targets being detected. 展开更多
关键词 TARGET tracking QOS Multi-Sink WIRELESS SENSOR networks.
暂未订购
Maximum Power Point Tracking Control Using Neural Networks for Stand-Alone Photovoltaic Systems 被引量:1
20
作者 Rihab Mahjoub Essefi Mansour Souissi Hsan Hadj Abdallah 《International Journal of Modern Nonlinear Theory and Application》 2014年第3期53-65,共13页
The employment of maximum power point tracking techniques in the photovoltaic power systems is well known and even of immense importance. There are various techniques to track the maximum power point reported in sever... The employment of maximum power point tracking techniques in the photovoltaic power systems is well known and even of immense importance. There are various techniques to track the maximum power point reported in several literatures. In such context, there is an increasing interest in developing a more appropriate and effective maximum power point tracking control methodology to ensure that the photovoltaic arrays guarantee as much of their available output power as possible to the load for any temperature and solar radiation levels. In this paper, theoretical details of the work, carried out to develop and implement a maximum power point tracking controller using neural networks for a stand-alone photovoltaic system, are presented. Attention has been also paid to the command of the power converter to achieve maximum power point tracking. Simulations results, using Matlab/Simulink software, presented for this approach under rapid variation of insolation and temperature conditions, confirm the effectiveness of the proposed method both in terms of efficiency and fast response time. Negligible oscillations around the maximum power point and easy implementation are the main advantages of the proposed maximum power point tracking (MPPT) control method. 展开更多
关键词 MAXIMUM Power Point tracking (MPPT) PHOTOVOLTAIC (PV) System NEURAL network BUCK CONVERTER
暂未订购
上一页 1 2 178 下一页 到第
使用帮助 返回顶部