期刊文献+
共找到137篇文章
< 1 2 7 >
每页显示 20 50 100
Analysis of piezoelectric semiconductor fibers under gradient temperature changes 被引量:1
1
作者 Shuangpeng LI Ruoran CHENG +1 位作者 Nannan MA Chunli ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期311-320,共10页
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ... Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects. 展开更多
关键词 piezoelectric semiconductor(PS)fiber one-dimensional(1D)model piezotronic effect gradient temperature change
在线阅读 下载PDF
Finite element model simulation and back propagation neural network modeling of void closure for an extra-thick plate during gradient temperature rolling
2
作者 Shun-hu Zhang Wen-hao Tian +4 位作者 Li-zhi Che Wei-jian Chen Yan Li Liang-wei Wan Zi-qi Yin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第9期2236-2247,共12页
The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element mode... The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element model of the gradient temperature rolling process was first developed and validated.The prediction error of the model for the rolling force is less than 2.51%,which has provided the feasibility of imbedding a defect in it.Based on the relevant data obtained from the simulation,the BP neural network was used to establish a prediction model for the compression degree of a void defect.After statistical analysis,80%of the data had a hit rate higher than 95%,and the hit rate of all data was higher than 90%,which indicates that the BP neural network can accurately predict the compression degree.Meanwhile,the comparisons between the results with the gradient temperature rolling and uniform temperature rolling,and between the results with the single-pass rolling and multi-pass rolling were discussed,which provides a theoretical reference for developing process parameters in actual production. 展开更多
关键词 BP neural network Finite element model gradient temperature rolling Void defect Extra-thick plate
原文传递
Study on the dynamic contact relationship between layers under temperature gradients in CRTSⅢ ballastless track 被引量:3
3
作者 Lei Zhao Guotang Zhao +2 位作者 Guotao Yang Hao Jin Chenxi Li 《High-Speed Railway》 2024年第3期133-142,共10页
In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities ... In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities that increase the wheel-rail impact of high-speed vehicles and accelerate track structure damage.Therefore,it is necessary to study the dynamic contact relationship between the composite slab and the base plate during vehicle running.The results of the study show that:1)Under the influence of temperature gradients,the composite slab tends to deform elliptically.With a positive temperature gradient,the middle part of the track slab bulges upward,causing the slab to be supported by its four corners.Conversely,with a negative temperature gradient,the four corners of the track slab bulge upward,resulting in the slab being supported by its center.2)Temperature gradients can lead to separation between the composite slab and the base plate,reducing the contact area between layers.During vehicle running,the contact area between layers gradually increases,but the separation cannot be completely closed.3)The temperature gradient significantly affects the vertical displacement of the track.The vertical displacement in the middle of the slab increases with a positive temperature gradient.In contrast,the vertical displacement at the ends of the slab increases with a negative temperature gradient.4)The stress of self-compacting concrete at the side position significantly increases under a positive temperature gradient,with the vertical stress increasing by 2.7 times when the temperature gradient increases from 0 to 90℃·m^(-1). 展开更多
关键词 High-speed railway Ballastless track temperature gradient Periodic irregularities Interlayer contact
在线阅读 下载PDF
Effect of temperature gradientinduced periodic deformation of CRTS Ⅲ slab track on dynamic responses of the train-track system 被引量:1
4
作者 Wang Jijun Zhang Huanxin +1 位作者 Shi Cheng Wang Meng 《Railway Sciences》 2024年第4期437-452,共16页
Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynam... Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.Design/methodology/approach-Considering the moving train,the temperature gradient of the slab,and the gravity of the slab track,a dynamic model for a high-speed train that runs along the CRTS Ⅲ slab track on subgrade is developed by a nonlinear coupled way in Abaqus.Findings-The results are as follows:(1)The upward transmission of the periodic deformation of the slab causes periodic track irregularity.(2)Because of the geometric constraint of limiting structures,the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients,but in the middle of the slab under negative temperature gradients.(3)The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status,leading to a large vibration of the slab.Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base,the accelerations of both the slab and concrete base are far less than the acceleration of the rail.Originality/value-This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system,and it also provides a guide for the safe service of CRTS Ⅲ slab track. 展开更多
关键词 Ballastless track CRTSⅢslab track temperature gradient Periodic deformation Train performance
在线阅读 下载PDF
An experimental study on effects of temperature gradient on microstructure of a 308L stainless steel manufactured by directed energy deposition
5
作者 Ting Dai De-yu Gu +3 位作者 Yu-wen Qiu Wei Guo Hui Ding Yi-wei Sun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第8期2031-2040,共10页
The effect of spatial temperature gradient on the microstructural evolution of a 308L stainless steel during the directed energy deposition(DED)process was experimentally investigated.A novel cooling system was design... The effect of spatial temperature gradient on the microstructural evolution of a 308L stainless steel during the directed energy deposition(DED)process was experimentally investigated.A novel cooling system was designed and incorporated to a DED system in order to control the temperature gradient along the deposition direction during solidification.During deposition,the workpiece was placed on a lifting platform,and as the deposition process proceeded,the platform and workpiece were gradually lowered into cooling water so that the temperature gradient along the deposition direction could be controlled and maintained stable during the deposition process.The microstructure characterization results indicated that a deposition strategy with higher G and G/R values(where G is temperature gradient and R is solidification rate)produced finer cellular grains that were better aligned with the deposition direction,while a deposition strategy with lower G and G/R values produced columnar grains with larger primary arm spacing and less aligned with the deposition direction. 展开更多
关键词 Additive manufacturing Directed energy deposition Stainless steel MICROSTRUCTURE temperature gradient
原文传递
Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport
6
作者 刘逸飞 李继全 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期8-15,共8页
The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic... The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient. 展开更多
关键词 gyro-Landau-fluid simulation impurity effects ion temperature gradient mode turbulence transport
在线阅读 下载PDF
Three-Dimensional Convection in an Inclined Porous Layer Subjected to a Vertical Temperature Gradient
7
作者 Ivan Shubenkov Tatyana Lyubimova Evgeny Sadilov 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1957-1970,共14页
In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gra... In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gradient.Typically,problems of thermal convection in tilted porous media saturated with a liquid are studied by assuming constant different temperatures at the boundaries of the layer,which prevent these systems from supporting conductive(non-convective)states.The boundary conditions considered in the present work allow a conductive state and are representative of typical geological applications.In an earlier work,we carried out a linear stability analysis of the conductive state.It was shown that at any layer tilt angles,the most dangerous type of disturbances are longitudinal rolls.Moreover,a non-zero velocity component exists in z-direction.In the present work,threedimensional non-linear convection regimes are studied.The original three-dimensional problem is reduced to two-dimensional one with an analytical expression for the velocity z-component v_(z)=v_(z)(x,y).It is shown that the critical Rayleigh number values obtained through numerical solutions of the obtained 2D problem by a finite difference method for different layer inclination angles,are in a good agreement with those predicted by the linear theory.The number of convective rolls realized in nonlinear calculations also fits the linear theory predictions for a given cavity geometry.Calculations carried out at low supercriticalities show that a direct bifurcation takes place.With increasing supercriticality,no transitions to other convective regimes are detected.The situation studied in this problem can be observed in oil-bearing rock formations under the influence of a geothermal temperature gradient,where the ensuing fluid convection can affect the distribution of oil throughout the layer. 展开更多
关键词 Thermal convection inclined layer porous media vertical temperature gradient
在线阅读 下载PDF
Genome-centric metagenomic analysis unveils the influence of temperature on the microbiome in anaerobic digestion
8
作者 Erqi Nie Pinjing He +1 位作者 Hua Zhang Fan Lü 《Journal of Environmental Sciences》 2025年第12期516-526,共11页
Temperature plays a crucial role in shaping microbial ecosystems during anaerobic digestion.However,the specific microbial communities and their functions across a wide temperature range still remain elusive.This stud... Temperature plays a crucial role in shaping microbial ecosystems during anaerobic digestion.However,the specific microbial communities and their functions across a wide temperature range still remain elusive.This study employed a genome-centric metagenomic approach to explore microbial metabolic pathways and synergistic networks at temperatures of 35,44,53,55,and 65℃.A total of 84 metagenome assembled genomes(MAGs)were assembled,with over 65%of these MAGs corresponding to novel bacterial and archaeal species(including Firmicutes,Chloroflexota,Bacteroidia and Methanobacteriota),greatly enhancing our current comprehension anaerobic digestion process.Notably,functional annotation identified that 44_bin.2(Methanothrix_A sp.001602645)harbors enzymes associated with hydrogenotrophic metabolism.Additionally,this microorganism exhibited diverse metabolic capabilities at 44℃,a temperature commonly employed in industrial practice yet less explored in bench studies.Consequently,it implies a promising potential for conducting anaerobic digestion at a moderate thermophilic temperature,as opposed to the conventional mesophilic range.The microorganism exhibited a variety of metabolic capabilities at 44℃,a temperature frequently employed in industrial applications but underexplored in laboratory investigations.The findings suggest that anaerobic digestion carried out at moderate thermophilic temperatures may have a higher potential for methane production. 展开更多
关键词 Anaerobic digestion Functional analysis Metagenomic binning temperature gradient
原文传递
Microstructural evolution and mechanical properties of Ti-5Al-5Mo-5V-3Cr alloy by heat treatment with continuous temperature gradient 被引量:7
9
作者 徐圣航 刘咏 +2 位作者 刘彬 王鑫 陈智星 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第2期273-281,共9页
A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was ind... A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was induced by the variation of the axial section of sample, which was heated by the direct current. The variation of continuous cooling rates on the treated sample was realized by using the end quenching method. The microstructural evolution and mechanical properties under different heat treatment conditions were evaluated. The results show that the pseudo-spinodal decomposition of the alloy occurs at(617±1) ?C, and the size of the precipitated α phase is around 300 nm. Moreover, the highest microhardness is obtained after the heat treatment at the pseudo-spinodal decomposition temperature for 4 h. These indicate that the high throughput method is efficient and fast to determine the phase transformation temperature and corresponding microstructural evolution of alloys. 展开更多
关键词 Ti-5Al-5Mo-5V-3Cr alloy high throughput method pseudo-spinodal decomposition temperature gradient microstructure mechanical properties
在线阅读 下载PDF
Sulfidation roasting of lead and zinc carbonate with sulphur by temperature gradient method 被引量:8
10
作者 郑永兴 刘维 +4 位作者 覃文庆 焦芬 韩俊伟 杨康 罗虹霖 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1635-1642,共8页
In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction s... In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction system was established and the sulfidation thermodynamics of lead and zinc carbonate was calculated with the software HSC 5.0. The effects of roasting temperature,molar ratio of sulphur to lead and zinc carbonate and reaction time in the first step roasting, and holding temperature and time in the second roasting on the sulfidation extent were studied at a laboratory-scale. The experimental results show that the sulfidation extents of lead and zinc are 96.50% and 97.29% under the optimal conditions, respectively, and the artificial galena, sphalerite and wurtzite were formed. By the novel sulfidizing process, it is expected that the sulphides can be recovered by conventional flotation technology. 展开更多
关键词 lead and zinc carbonate SULPHUR ROASTING temperature gradient PYROMETALLURGY
在线阅读 下载PDF
Solidification microstructure of directionally solidified superalloy under high temperature gradient 被引量:7
11
作者 Zhang Weiguo Liu Lin 《Rare Metals》 SCIE EI CAS CSCD 2012年第6期541-546,共6页
The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional sol... The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional solidification rate from 50 to 800 μm·s-1, both the primary and the secondary dendrite arm spacings of the alloy decrease gradually, and the dendrite morphologies transform from coarse dendrite to superfine dendrite. The sizes of all precipitates in the superalloy decrease gradually. The morphology of γ' precipitate changes from cube to sphere shape and distributes uniformly in both dendrite core and interdendritic regions. MC carbide morphology changes from coarse block to fine-strip and then to Chinese-script and mainly consists of Ta, W, and Hf elements. The γ-γ' eutectic fraction increases firstly and then decreases, and similar regularity is also found for the variation of segregation ratio of elements. 展开更多
关键词 directional solidification SUPERALLOY high temperature gradient solidification rate MICROSTRUCTURE
在线阅读 下载PDF
Experimental study of temperature gradient in track slab under outdoor conditions in Chengdu area 被引量:12
12
作者 Pingrui Zhao Xueyi Liu Guan Liu 《Journal of Modern Transportation》 2014年第3期148-155,共8页
Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built u... Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built under outdoor conditions in Chengdu area; the statistical characteristic of temperature gradient in track slab and the relationship between temperature gradient and surface air temperature were tested and analyzed. The results show that the track slab temperature gradient will vary periodically according to the surface air temperature, and show a clear nonlinearity along the height direction. The temperature gradient distribution is extremely uneven: the temperature gradient in the top part of the track slab is larger than that in the bottom part; the most frequently occurring temperature gradient of the track slab is around -3.5 ℃/m and more than 75 % locates in the level -10 to 10 ℃/m; concrete with a relatively good heat exchange condition with the surrounding air has a narrower band distribution. In addition, the frequency distribution histogram should exclude the time zone from 00:00 to 06:00 because there is almost no traffic in this period. The amplitude of track slab temperature variation is obviously lower than that of the air temperature variation, and the former is approximately linear with the latter. 展开更多
关键词 Slab track Track slab - temperature gradient temperature field Surface air temperature
在线阅读 下载PDF
Numerical investigation of temperature gradient-induced thermal stress for steel–concrete composite bridge deck in suspension bridges 被引量:7
13
作者 WANG Da DENG Yang +1 位作者 LIU Yong-ming LIU Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期185-195,共11页
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit... A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study. 展开更多
关键词 suspension bridge steel–concrete composite bridge deck vertical temperature gradient finite element method thermal stress
在线阅读 下载PDF
Morphology and orientation evolution of Cu_(6)Sn_(5)grains on(001)Cu and(011)Cu single crystal substrates under temperature gradient 被引量:4
14
作者 Yuanyuan Qiao Xiaoying Liu +3 位作者 Ning Zhao Lawrence C M Wu Chunying Liu Haitao Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第36期29-39,共11页
The morphology and orientation evolution of Cu_(6)Sn_(5)grains formed on(001)Cu and(011)Cu single crystal substrates under temperature gradient(TG)were investigated.The initial orientated prism-type Cu_(6)Sn_(5)grains... The morphology and orientation evolution of Cu_(6)Sn_(5)grains formed on(001)Cu and(011)Cu single crystal substrates under temperature gradient(TG)were investigated.The initial orientated prism-type Cu_(6)Sn_(5)grains transformed to non-orientated scallop-type after isothermal reflow.However,the Cu_(6)Sn_(5)grains with strong texture were revealed on cold end single crystal Cu substrates by imposing TG.The Cu_(6)Sn_(5)grains on(001)Cu grew along their c-axis parallel to the substrate and finally merged into one grain to form a fully IMC joint,while those on(011)Cu presented a strong texture and merged into a few dominant Cu_(6)Sn_(5)grains showing about 30°angle with the substrate.The merging between neighboring Cu_(6)Sn_(5)grain pair was attributed to the rapid grain growth and grain boundary migration.Accordingly,a model was put forward to describe the merging process.The different morphology and orientation evolutions of the Cu_(6)Sn_(5)grains on single crystal and polycrystal Cu substrates were revealed based on crystallographic relationship and Cu flux.The method for controlling the morphology and orientation of Cu_(6)Sn_(5)grains is really benefitial to solve the reliability problems caused by anisotropy in 3 D packaging. 展开更多
关键词 3D packaging Single crystal Cu temperature gradient ORIENTATION Disregistry Grain boundary migration
原文传递
Temperature gradients in concrete box girder bridge under effect of cold wave 被引量:3
15
作者 顾斌 陈志坚 陈欣迪 《Journal of Central South University》 SCIE EI CAS 2014年第3期1227-1241,共15页
The temperature distributions of a prestressed concrete box girder bridge under the effect of cold wave processes were analyzed. The distributions were found different from those under the effect of solar radiation or... The temperature distributions of a prestressed concrete box girder bridge under the effect of cold wave processes were analyzed. The distributions were found different from those under the effect of solar radiation or nighttime radiation cooling and should not be simplified as one dimensional. A temperature predicting model that can accurately predict temperatures over the cross section of the concrete box girder was developed. On the basis of the analytical model, a two-dimensional temperature gradient model was proposed and a parametric study that considered meteorological factors was performed. The results of sensitivity analysis show that the cold wave with shorter duration and more severe temperature drop may cause more unfavorable influences on the concrete box girder bridge. Finally, the unrestrained linear curvatures, self-equilibrating stresses and bending stresses when considering the frame action of the cross section, were derived from the proposed temperature gradient model and current code provisions, respectively. Then, a comparison was made between the value calculated against proposed model and several current specifications. The results show that the cold wave may cause more unfavorable effect on the concrete box girder bridge, especially on the large concrete box girder bridge. Therefore, it is necessary to consider the thermal effect caused by cold wave during the design stage. 展开更多
关键词 concrete box girder temperature field temperature gradient cold wave
在线阅读 下载PDF
Vertical temperature gradients of concrete box girder caused by solar radiation in Sichuan-Tibet railway 被引量:3
16
作者 Tao SHI Xing-wang SHENG +1 位作者 Wei-qi ZHENG Ping LOU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第5期375-387,共13页
Spatial and temporal temperature variations are critical for concrete box girders,and non-uniform temperature distributions induced by solar radiation depend on the structural shapes and shadows cast on them.There hav... Spatial and temporal temperature variations are critical for concrete box girders,and non-uniform temperature distributions induced by solar radiation depend on the structural shapes and shadows cast on them.There have been many studies of temperature distributions and temperature gradients of concrete box girders,but few have considered a high altitude plateau climatic environment.In this study,the nonlinear temperature distributions of concrete box girders in the Sichuan-Tibet railway caused by solar radiation were investigated based on experimental analysis,real-time shadow-selection algorithm,and finite element method.Furthermore,a vertical temperature gradient model of the concrete box girders was obtained.The vertical temperature gradient values first rise,then decrease,and finally rise again from Chengdu to Lhasa,with samples forming a normal distribution.The recommended vertical temperature gradient value was 25℃with a confidence interval of 95%.This provides a reference for the design and maintenance of concrete box girders on the Sichuan-Tibet railway. 展开更多
关键词 Concrete box girder Solar radiation temperature gradient Sichuan-Tibet railway Probability statistics
原文传递
Solid–liquid Interdiffusion Bonding of Cu/Sn/Ni Micro-joints with the Assistance of Temperature Gradient 被引量:5
17
作者 Yanqing Lai Shi Chen +2 位作者 Xiaolei Ren Yuanyuan Qiao Ning Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第11期1912-1924,共13页
A novel solid-liquid interdiffusion(SLID)bonding method with the assistance of temperature gradient(TG)was carried out to bonding Cu and Ni substrates with Sn as interlayer.The element distribution and grain morpholog... A novel solid-liquid interdiffusion(SLID)bonding method with the assistance of temperature gradient(TG)was carried out to bonding Cu and Ni substrates with Sn as interlayer.The element distribution and grain morphology of interfacial intermetallic compound(IMC)in Cu/Sn/Ni micro-joints during both SLID and TG-SLID bonding and in the final Cu/(Cu,Ni)_(6)Sn_(5)/Ni full IMC micro-joints were analyzed.Under the effect of Cu-Ni cross-interaction,interfacial(Cu,Ni)_(6)Sn_(5) dominated the IMC growth at all the interfaces.The morphology of the(Cu,Ni)_(6)Sn_(5) grains was closely related to Ni content with three levels of low,medium and high.The full IMC micro-joints consisted of L-(Cu,Ni)_(6) Sn_(5),M-(Cu,Ni)_(6)Sn_(5) and H-(Cu,Ni)_(6)Sn_(5) grains after SLID bonding or TG-SLID bonding with Ni as hot end,while only L-(Cu,Ni)_(6)Sn_(5) grains after TG-SLID bonding with Cu as hot end,showing that the direction of TG had a remarkably effect on the growth and morphology of the interfacial(Cu,Ni)_(6)Sn_(5) during TG-SLID bonding.Thermodynamic analysis revealed the key molar latent heat and critical Ni content between fine-rounded-like(Cu,Ni)_(6)Sn_(5) and block-like(Cu,Ni)_(6)Sn_(5) were 17,725.4 J and 11.0 at.%at 260℃,respectively.Moreover,the growth kinetic of the interfacial IMC was analyzed in detail during bonding with and without TG.Under the combination of TG and Cu-Ni cross-interaction,void-free full IMC micro-joints were fast formed by TG-SLID bonding with Cu as hot end.This bonding method may present a feasible solution to solve the problems of low formation efficiency and inevitable Cu_(3) Sn growth of full IMC joints for 3 D packaging applications. 展开更多
关键词 3D packaging Interfacial reaction Full intermetallic compound(IMC)micro-joints Solid–liquid interdiff usion temperature gradient Cu-Ni cross-interaction
原文传递
Effects of Temperature Gradient and Cooling Rate on the Formation of Methane Hydrates in Coarse Sand 被引量:3
18
作者 Wang Yingmei Wu Qingbai +1 位作者 Zhang Peng Jiang Guanli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第2期42-52,共11页
Temperature gradient and cooling rate have an obvious effect on formation of methane hydrate. The process for formation of methane hydrate in coarse sand is monitored to tmderstand the relationship between temperature... Temperature gradient and cooling rate have an obvious effect on formation of methane hydrate. The process for formation of methane hydrate in coarse sand is monitored to tmderstand the relationship between temperature gradient and cooling rate and nucleation, growth and distribution of methane hydrate by using the electrical resistivity method. The results show that the change of resistivity can better reflect the nucleation and growth and distribution of methane hydrate. Temperature gradient promotes the nucleation, formation, and formation rate of methane hydrate. At a temperature gradient of 0.11℃/cm, the rate of methane hydrate formation and saturation reaches a maximum. Cooling rate has little effect on the methane hydrate formation process. Judging from the outcome of final spatial distribution of methane hydrate, the cooling rate has an obvious but irregular effect in coarse sand. The effect of tempera^re gradient on distribution of methane hydrate in coarse sand is less than that of cooling rate. At a temperature gradient of 0.07℃/cm, methane hydrate is distributed uniformly in the sample. If the temperature gradient is higher or lower than this value, the hydrate is enriched in the upper layer of sample. 展开更多
关键词 methane hydrate cooling rate temperature gradient RESISTIVITY FORMATION hydrate distribution
在线阅读 下载PDF
Suppression of ice nucleation in supercooled water under temperature gradients 被引量:2
19
作者 Li-Ping Wang Wei-Liang Kong +2 位作者 Pei-Xiang Bian Fu-Xin Wang Hong Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期657-666,共10页
Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gra... Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory(CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius,nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively.The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely. 展开更多
关键词 supercooled water ice nucleation temperature gradient thermodynamic analysis classical nucleation theory
原文传递
Temperature Gradient Induced Orientation Change of Bi Grains in Sn–Bi57–Ag0.7 Solder Joint 被引量:2
20
作者 Yinbo Chen Zhaoqing Gao Zhi-Quan Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第7期1184-1194,共11页
Sn-Bi-X solders are widely used in electronic packaging industry.However,thermomigration(TM)behaviors of Sn-BiX solder joints and the orientations change of Bi grains under the temperature gradient are rarely reported... Sn-Bi-X solders are widely used in electronic packaging industry.However,thermomigration(TM)behaviors of Sn-BiX solder joints and the orientations change of Bi grains under the temperature gradient are rarely reported.In this study,Sn-Bi57-Ag0.7/Cu solder joints were used to conduct a TM test under a temperature gradient of 625℃/cm for 400 h,and an isothermal aging test at 85℃was also conducted for comparison.The microstructural evolution of Sn-Bi-X solder joints after reflow,TM and isothermal aging were analyzed by scanning electron microscopy(SEM),transmission electron microscopy(TEM)and electron probe microanalysis(EPMA).The results indicated that the Sn/Bi areal ratio after TM did not change significantly whether at the hot end(from 46.78%/52.12%to 50.90%/48.78%)or at the cold end(from 50.25%/49.64%to 48.71%/51.16%)compared with that of as-reflowed samples due to the insufficient thermal energy.The thickness of intermetallic compound(IMC)after TM at hot end(2.49μm)was very close to that of the IMC at cold end(2.52μm),which was also close to that of the aged samples.In addition,the preferred orientations of Sn and Bi grains in different Sn–Bi–Ag solder joints resulting from different conditions(reflow,TM and isothermal aging)were characterized by electron backscatter diffraction(EBSD).The obtained results demonstrated that both Sn and Bi grains had no preferred orientation whether after reflowor isothermal aging,while the orientation of Bi grains of the sample after TM changed from random direction to c-axis([0001]direction)parallel to the heat flow.Ag 3 Sn could hinder the change of orientation of Bi grains under the temperature gradient,and the corresponding mechanism was also systematically illuminated.This study firstly revealed the orientation change of Bi grains under the temperature gradient,which would have a profound guiding significance for enhancing the reliabilities of Sn–Bi–Ag solder joints. 展开更多
关键词 Sn–Bi–Ag solder Grain orientation temperature gradient AGING Ag3Sn
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部