The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature g...The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature gradient or an external force field,the partition ratio at a solid-liquid interface will deviate from the equilibrium value.展开更多
A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and S...A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and Shafranov shift gradient) on the electrostatic electron temper- ature gradient (ETG) driven modes are investigated numerically. It is found that the finite aspect ratio has a general stabilizing effect, while the elongation can be either stabilizing or destabilizing, depending on the poloidal wavelength of the mode and other parameters. It is shown that a low aspect ratio enhances the stabilizing effect of elongation, and weakens its destabilizing effect as well.展开更多
文摘The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature gradient or an external force field,the partition ratio at a solid-liquid interface will deviate from the equilibrium value.
基金National Natural Science Foundation of China(No.10405014)
文摘A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and Shafranov shift gradient) on the electrostatic electron temper- ature gradient (ETG) driven modes are investigated numerically. It is found that the finite aspect ratio has a general stabilizing effect, while the elongation can be either stabilizing or destabilizing, depending on the poloidal wavelength of the mode and other parameters. It is shown that a low aspect ratio enhances the stabilizing effect of elongation, and weakens its destabilizing effect as well.