期刊文献+
共找到1,499篇文章
< 1 2 75 >
每页显示 20 50 100
Convergence Properties Analysis of Gradient Neural Network for Solving Online Linear Equations 被引量:3
1
作者 ZHANG Yu-Nong CHEN Zeng-Hai CHEN Ke 《自动化学报》 EI CSCD 北大核心 2009年第8期1136-1139,共4页
关键词 神经网络 线性方程组 渐近收敛性 计算机仿真技术
在线阅读 下载PDF
Generation of Linear and Parabolic Concentration Gradients by Using a Christmas Tree-Shaped Microfluidic Network 被引量:2
2
作者 SHEN Qilong ZHOU Qiongwei +1 位作者 LU Zhigang ZHANG Nangang 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第3期244-250,共7页
This paper describes a simple method of generating concentration gradients with linear and parabolic profiles by using a Christmas tree-shaped microfluidic network.The microfluidic gradient generator consists of two p... This paper describes a simple method of generating concentration gradients with linear and parabolic profiles by using a Christmas tree-shaped microfluidic network.The microfluidic gradient generator consists of two parts:a Christmas tree-shaped network for gradient generation and a broad microchannel for detection.A two-dimensional model was built to analyze the flow field and the mass transfer in the microfluidic network.The simulating results show that a series of linear and parabolic gradient profiles were generated via adjusting relative flow rate ratios of the two source solutions(R_L^2≥0.995 and _PR^2≥0.999),which could match well with the experimental results(R_L^2≥0.987 and _PR^2≥0.996).The proposed method is promising for the generation of linear and parabolic concentration gradient profiles,with the potential in chemical and biological applications such as combinatorial chemistry synthesis,stem cell differentiation or cytotoxicity assays. 展开更多
关键词 tree-shaped network concentration gradient linear profile parabolic profile
原文传递
CONVERGENCE OF ONLINE GRADIENT METHOD WITH A PENALTY TERM FOR FEEDFORWARD NEURAL NETWORKS WITH STOCHASTIC INPUTS 被引量:3
3
作者 邵红梅 吴微 李峰 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2005年第1期87-96,共10页
Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, a... Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, assuming that the training examples are input in a stochastic way. The monotonicity of the error function in the iteration and the boundedness of the weight are both guaranteed. We also present a numerical experiment to support our results. 展开更多
关键词 前馈神经网络系统 收敛 随机变量 单调性 有界性原理 在线梯度计算法
在线阅读 下载PDF
Online Gradient Methods with a Punishing Term for Neural Networks 被引量:2
4
作者 孔俊 吴微 《Northeastern Mathematical Journal》 CSCD 2001年第3期371-378,共8页
Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the impl... Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the implementation of the network by electronic circuits. In this paper we introduce a punishing term into the error function of the training procedure to prevent this situation. The corresponding convergence of the iterative training procedure and the boundedness of the weight sequence are proved. A supporting numerical example is also provided. 展开更多
关键词 feedforward neural network online gradient method CONVERGENCE BOUNDEDNESS punishing term
在线阅读 下载PDF
Convergence of gradient method for Elman networks
5
作者 吴微 徐东坡 李正学 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第9期1231-1238,共8页
The gradient method for training Elman networks with a finite training sample set is considered. Monotonicity of the error function in the iteration is shown. Weak and strong convergence results are proved, indicating... The gradient method for training Elman networks with a finite training sample set is considered. Monotonicity of the error function in the iteration is shown. Weak and strong convergence results are proved, indicating that the gradient of the error function goes to zero and the weight sequence goes to a fixed point, respectively. A numerical example is given to support the theoretical findings. 展开更多
关键词 Elman network gradient learning algorithm CONVERGENCE MONOTONICITY
在线阅读 下载PDF
A Study on the Convergence of Gradient Method with Momentum for Sigma-Pi-Sigma Neural Networks 被引量:1
6
作者 Xun Zhang Naimin Zhang 《Journal of Applied Mathematics and Physics》 2018年第4期880-887,共8页
In this paper, a gradient method with momentum for sigma-pi-sigma neural networks (SPSNN) is considered in order to accelerate the convergence of the learning procedure for the network weights. The momentum coefficien... In this paper, a gradient method with momentum for sigma-pi-sigma neural networks (SPSNN) is considered in order to accelerate the convergence of the learning procedure for the network weights. The momentum coefficient is chosen in an adaptive manner, and the corresponding weak convergence and strong convergence results are proved. 展开更多
关键词 Sigma-Pi-Sigma NEURAL network MOMENTUM TERM gradient Method CONVERGENCE
在线阅读 下载PDF
融合全局指针网络与对比学习的嵌套命名实体识别
7
作者 刘继 谢京城 《计算机应用研究》 北大核心 2026年第1期129-135,共7页
为解决现有嵌套命名实体识别方法中存在的实体表示不充分、边界模糊和语义相似实体难以区分的问题,提出了一种基于全局指针网络与对比学习融合的中文嵌套命名实体识别方法。采用全局指针机制,通过构建实体头尾指针矩阵,将实体识别转换... 为解决现有嵌套命名实体识别方法中存在的实体表示不充分、边界模糊和语义相似实体难以区分的问题,提出了一种基于全局指针网络与对比学习融合的中文嵌套命名实体识别方法。采用全局指针机制,通过构建实体头尾指针矩阵,将实体识别转换为指针预测问题,引入对比学习框架增强实体表示的语义判别能力,采用基于移动平均的梯度归一化策略,平衡多任务学习中各子任务的优化难度。在CLUENER2020和CMeEE数据集上的实验表明,该方法与基线global pointer模型相比,F 1值分别提升2.30和2.55个百分点,验证了其在中文嵌套命名实体识别任务中的有效性。 展开更多
关键词 命名实体识别 嵌套实体 全局指针网络 对比学习 梯度归一化
在线阅读 下载PDF
基于梯度算法的小区宽带智能规划策略研究
8
作者 黄震 刘昊 《办公自动化》 2026年第1期119-122,共4页
文章提出运用人工智能技术,分析小区宽带内外部环境因素,精准预测建设需求,高效辅助小区宽带规划,提升运营商竞争力。AI梯度算法在垂直领域应用广泛,对小区宽带规划要素运算及预测效果显著。
关键词 梯度算法 智能规划 小区宽带 网络优化
在线阅读 下载PDF
不同训练算法下光子神经网络鲁棒性能研究
9
作者 陆鸣豪 陆云清 +3 位作者 曹雯 刘美玉 邵晓锋 王瑾 《自动化技术与应用》 2026年第1期17-21,共5页
优化了训练算法和学习率组合以提高光子神经网络(optical neural network,ONN)对器件误差的鲁棒性能,同时确保其对数字图像的高精确识别。仿真搭建两种全连接ONN架构,即GridNet和FFTNet,其中使用马赫曾德尔干涉仪(mach-zehnder interfer... 优化了训练算法和学习率组合以提高光子神经网络(optical neural network,ONN)对器件误差的鲁棒性能,同时确保其对数字图像的高精确识别。仿真搭建两种全连接ONN架构,即GridNet和FFTNet,其中使用马赫曾德尔干涉仪(mach-zehnder interferometers,MZI)作为光子器件,并对含有器件误差的ONN进行了不同算法的训练,包括随机梯度下降(stochastic gradient descent,SGD)、均方根传递(root mean square prop,RMSprop)、适应性矩估计(adaptive moment estimation,Adam)和自适应梯度下降(adaptive gradient,Adagrad)。结果表明,在不同程度的器件误差下,FFTNet型ONN比GridNet型ONN更鲁棒。具体来说,采用学习率为0.005的RMSprop和Adam算法以及学习率为0.5的Adagrad算法训练的FFTNet型ONN在数字图像识别精度和器件误差鲁棒性上表现最佳。优化训练算法和学习率的组合可以有效提高ONN的鲁棒性能。 展开更多
关键词 光子神经网络 器件误差 马赫曾德尔干涉仪 梯度下降算法 学习率
在线阅读 下载PDF
Modeling and optimum operating conditions for FCCU using artificial neural network 被引量:6
10
作者 李全善 李大字 曹柳林 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1342-1349,共8页
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ... A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness. 展开更多
关键词 radial basis function(RBF) neural network self-organizing gradient descent double-model fluid catalytic cracking unit(FCCU)
在线阅读 下载PDF
A Study of New Method for Weapon System Effectiveness Evaluation Based on Bayesian Network 被引量:1
11
作者 阎代维 谷良贤 潘雷 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第3期209-213,共5页
As weapon system effectiveness is affected by many factors,its evaluation is essentially a multi-criterion decision making problem for its complexity.The evaluation model of the effectiveness is established on the bas... As weapon system effectiveness is affected by many factors,its evaluation is essentially a multi-criterion decision making problem for its complexity.The evaluation model of the effectiveness is established on the basis of metrics architecture of the effectiveness.The Bayesian network,which is used to evaluate the effectiveness,is established based on the metrics architecture and the evaluation models.For getting the weights of the metrics by Bayesian network,subjective initial values of the weights are given,gradient ascent algorithm is adopted,and the reasonable values of the weights are achieved.And then the effectiveness of every weapon system project is gained.The weapon system,whose effectiveness is relative maximum,is the optimization system.The research result shows that this method can solve the problem of AHP method which evaluation results are not compatible to the practice results and overcome the shortcoming of neural network in multilayer and multi-criterion decision.The method offers a new approach for evaluating the effectiveness. 展开更多
关键词 导弹 可行性 战斗能力 网络技术
在线阅读 下载PDF
Application of Neural Network to Downhill Shift Strategy for Automatic Transmission 被引量:1
12
作者 李尧 喻凡 吴晨 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第4期498-503,共6页
" A method is proposed to estimate the longitudinal road gradient with a concept "general gradient force (GGF)", in which uncertain factors such as additional vertical load, road surface change, and strong wind a... " A method is proposed to estimate the longitudinal road gradient with a concept "general gradient force (GGF)", in which uncertain factors such as additional vertical load, road surface change, and strong wind are also taken into account. An adaptive downhill shift control system is then developed to help driver to use the engine brake with lower gears while downhill driving. In the adaptive system, a three-layer neural network is built to evaluate the necessity to make use of engine brake capability in current downhill situation, and the neural network is trained with samples from experienced drivers. Field test results of the adaptive system are introduced to verify the effectiveness of the approach mentioned above. 展开更多
关键词 road gradient estimation neural network DOWNHILL state machine
原文传递
水表检定装置Bregman深度学习PID方法研究
13
作者 张柯 王梅 +2 位作者 樊家成 陈飞 丁国强 《自动化仪表》 2026年第1期77-84,共8页
针对水表检定装置的压力和流量相互深度耦合产生的复合控制问题,在分析压力和流量的耦合影响关系基础上,基于随机Bregman近端梯度下降法设计深度学习神经网络训练策略,提出了Bregman深度学习比例积分微分(PID)方法。该方法以变频器频率... 针对水表检定装置的压力和流量相互深度耦合产生的复合控制问题,在分析压力和流量的耦合影响关系基础上,基于随机Bregman近端梯度下降法设计深度学习神经网络训练策略,提出了Bregman深度学习比例积分微分(PID)方法。该方法以变频器频率作为压力控制量、调节阀开度作为流量主控量。通过试验验证了该方法的训练预测和控制特性。试验数据说明,当调节阀预测误差在-1%~+3%范围内波动,以及变频器预测误差在-0.3%~+0.4%范围内变化时,该方法控制效果良好。与传统方法相比,该方法控制中的流量和压力调节时间分别减少20%和13%左右。该方法能提高检定装置的工作效率及稳定性,具有较高的应用、推广价值。 展开更多
关键词 过程控制系统 水表检定装置 Bregman深度学习 比例积分微分 卷积神经网络 近端梯度下降法
在线阅读 下载PDF
融合景观特征识别和城乡梯度分析的滨水生境网络构建方法——以江苏省昆山市为例 被引量:1
14
作者 王敏 余谦益 汪洁琼 《中国园林》 北大核心 2025年第1期117-124,共8页
高度异质性是城市生态系统的重要特征,一方面影响城市生物多样性和景观地方性的形成,另一方面是导致生物多样性丧失的风险之一。从城乡梯度和景观地方性特征角度切入,探索如何在生境网络构建过程中响应城市空间异质性特征,实现生境及生... 高度异质性是城市生态系统的重要特征,一方面影响城市生物多样性和景观地方性的形成,另一方面是导致生物多样性丧失的风险之一。从城乡梯度和景观地方性特征角度切入,探索如何在生境网络构建过程中响应城市空间异质性特征,实现生境及生物多样性分类保护提升。以江苏省昆山市为例,响应城乡梯度景观特征,提取获得9种典型地方性滨水景观类型并分析其生境特征,据此选取白鹭、泽陆蛙、池杉作为指示物种,爬梳文献构建多物种生境适宜性评价指标体系;运用ArcGIS进行多物种生境适宜性评价,并对结果进行K-Means聚类分析,得到6类复合生境组合,其中4类属于滨水生境并呈现城乡梯度特征。在此基础上,依托昆山现有连通度较高的蓝绿空间网络构建形成响应城乡梯度景观特征的滨水生境网络,并提出针对性的分类发展策略,为高密度城市的生物多样性保护提供重要基础支撑。 展开更多
关键词 风景园林 滨水生境 生物多样性 景观特征识别 城乡梯度 网络构建
在线阅读 下载PDF
The Influence Factors Analysis to Improve the Compatibility and the Mechanical Behavior of IPN, Gradient IPN and BaTiO<sub>3</sub>Filled IPN
15
作者 Yudi Guo Dongyan Tang Ying Wang 《Materials Sciences and Applications》 2012年第9期606-611,共6页
Interpenetrating polymer network (IPN), gradient IPN and BaTiO3 filled IPN, composed of poly(ethylene glycol urethane) (PEGPU) and unsaturated polyester resin (UP) curing at room temperatures were prepared. Then the e... Interpenetrating polymer network (IPN), gradient IPN and BaTiO3 filled IPN, composed of poly(ethylene glycol urethane) (PEGPU) and unsaturated polyester resin (UP) curing at room temperatures were prepared. Then the effect of soft/hard segment ratio in polyurethane (PU), component ratio of PU to UP in IPN, adding amount of BaTiO3 in filled IPN, the component sequences and interval times between each IPN for gradient IPN, on morphology and mechanical behavior of IPN and BaTiO3/IPN nanocomposites with different molecular weight of PU were studied systematically. Moreover, the investigation on the relationship between the morphologies and the mechanical properties indicated that the IPN with finer morphology exhibited an excellent consistency of the higher strengths and elongations. 展开更多
关键词 Poly(ethylene GLYCOL Urethane) (PEGPU) gradient Interpenetrating Polymer networks (gradient IPN) BaTiO3 Morphology Mechanical Property
在线阅读 下载PDF
Developments of Rill Networks: An Experimental Plot Scale Study
16
作者 Pravat Kumar Shit Gouri Sankar Bhunia Ramkrishna Maiti 《Journal of Water Resource and Protection》 2013年第2期133-141,共9页
Enumerating the relative proportions of soil losses due to rill erosion processes during monsoon and post-monsoon season is a significant factor in predicting total soil losses and sediment transport and deposition. P... Enumerating the relative proportions of soil losses due to rill erosion processes during monsoon and post-monsoon season is a significant factor in predicting total soil losses and sediment transport and deposition. Present study evaluated the rill network with simulated experiment of treatments on varying slope and rainfall intensity to find out the rill erosion processes and sediment discharge in relation to slope and rainfall intensity. Results showed a significant relationship between the rainfall intensity and sediment yield (r = 0.75). Our results illustrated that due to increase in rainfall intensity represent the development of efficient rill network while, no rill was found with a slope of 20° and a rainfall intensity of 60 mm·h-1. The highest rill length was observed in plot E with 20° slope and 120 mm·h-1 rainfall intensity at 360 minutes. Positive and strong correlation (R2 = 0.734, P 0.001) was observed between the cumulative rainfall intensity and sediment discharge. A longitudinal profile was delineated and showed that the depth and numbers of depressions amplified with time and were more prominent for escalating rainfall intensity for its steeper slopes. Information derived from the study could be applied to estimate longer-term erosion stirring over larger areas possessing parallel landforms. 展开更多
关键词 RILL network SLOPE gradient RAINFALL Simulation SEDIMENT Yield
暂未订购
Application of LiDAR Data for Hydrologic Assessments of Low-Gradient Coastal Watershed Drainage Characteristics
17
作者 Devendra Amatya Carl Trettin +1 位作者 Sudhanshu Panda Herbert Ssegane 《Journal of Geographic Information System》 2013年第2期175-191,共17页
Documenting the recovery of hydrologic functions following perturbations of a landscape/watershed is important to address issues associated with land use change and ecosystem restoration. High resolution LiDAR data fo... Documenting the recovery of hydrologic functions following perturbations of a landscape/watershed is important to address issues associated with land use change and ecosystem restoration. High resolution LiDAR data for the USDAForestServiceSanteeExperimentalForestin coastalSouth Carolina,USAwas used to delineate the remnant historical water management structures within the watersheds supporting bottomland hardwood forests that are typical of the re- gion. Hydrologic functions were altered during the early1700’s agricultural use period for rice cultivation, with changes to detention storage, impoundments, and runoff routing. Since late1800’s, the land was left to revert to forests, without direct intervention. The resultant bottomlands, while typical in terms of vegetative structure and composition, still have altered hydrologic pathways and functions due to the historical land use. Furthermore, an accurate estimate of the watershed drainage area (DA) contributing to stream flow is critical for reliable estimates of peak flow rate, runoff depth and coefficient, as well as water and chemical balance. Peak flow rate, a parameter widely used in design of channels and cross drainage structures, is calculated as a function of the DA and other parameters. However, in contrast with the upland watersheds, currently available topographic maps and digital elevation models (DEMs) used to estimate the DA are not adequate for flat, low-gradient Coastal Plain (LCP) landscape. In this paper we explore a case study of a 3rd order watershed (equivalent to 14-digit hydrologic unit code (HUC)) at headwaters of east branch of Cooper River draining to Charleston Harbor, SC to assess the drainage area and corresponding mean annual runoff coefficient based on various DEMs including LiDAR data. These analyses demonstrate a need for application of LiDAR-based DEMs together with field verification to improve the basis for assessments of hydrology, watershed drainage characteristics, and modeling in the LCP. 展开更多
关键词 Santee Experimental Forest Digital ELEVATION Models (DEM) Drainage Area Drainage network Low-gradient Coastal Plain (LCP)
暂未订购
面向多源数据的CNN-XGB抽油机井故障诊断技术 被引量:1
18
作者 张黎明 吴雨垣 +4 位作者 李敏 尹承哲 王鑫炎 刘冰 王树源 《石油钻采工艺》 北大核心 2025年第1期44-52,共9页
在油田生产过程中,抽油机井的稳定运行对于提高生产效率和经济效益至关重要。然而,现有的故障诊断技术大多依赖于单一数据源(如示功图数据或生产参数)进行模型训练,在面对杆断脱和泵漏失等复杂工况时,诊断精度严重不足,甚至出现诊断失... 在油田生产过程中,抽油机井的稳定运行对于提高生产效率和经济效益至关重要。然而,现有的故障诊断技术大多依赖于单一数据源(如示功图数据或生产参数)进行模型训练,在面对杆断脱和泵漏失等复杂工况时,诊断精度严重不足,甚至出现诊断失效的情况。为此,提出了一种面向多源数据融合的CNN-XGB故障诊断模型,结合卷积神经网络(CNN)和极端梯度提升(XGB)算法,分别提取泵功图图像特征和油井生产参数特征,从多个角度捕捉反映不同工况的特征信息。通过将这些特征整合并输入多层感知机(MLP),模型能够实现更精准的分类结果,从而显著提高特异性识别能力。实验结果表明,该融合模型在6种典型工况下的诊断精确率和召回率均超过95%,相较于传统的CNN和XGB模型,展现出更高的诊断准确性和鲁棒性。这一方法有效解决了单一数据源在故障诊断中的局限性,为油田抽油机井工况的智能诊断提供了一种新的技术手段,具有重要的实际应用价值。 展开更多
关键词 抽油机井 示功图 多源数据 卷积神经网络 极端梯度提升 模型融合 工况诊断
在线阅读 下载PDF
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
19
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 TRANSFORMER 注意力模块 梯度融合
在线阅读 下载PDF
基于BPNN-EKF-GD-RF算法的锂离子电池组荷电状态估计方法 被引量:1
20
作者 来鑫 翁嘉辉 +4 位作者 杨一鹏 孙宇飞 周龙 郑岳久 韩雪冰 《机械工程学报》 北大核心 2025年第12期251-265,共15页
锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难... 锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难。提出一种将BP神经网络(Back propagation neural network, BPNN)与扩展卡尔曼滤波(Extended Kalman filter, EKF)算法相结合的电池组SOC估计方法。该方法首先基于先验SOC利用BPNN估计不同温度下“领导者”电池的端电压,将其与实测端电压对比后采用EKF算法完成SOC后验估计,同时基于电压差采用梯度下降(Gradient descent, GD)算法更新BPNN的输出层权重使算法更快收敛。在此基础上,设计修正策略利用随机森林(Random forest, RF)算法对“跟随者”电池的SOC进行调整估计。试验结果表明,所提的BPNN-EKF-GD-RF算法能实现电池组在不同温度下SOC的准确估计,常温下SOC估计误差保持在2.5%以内,在温度变化下电池组中单体电池SOC估计最大误差不超过3.2%,为复杂环境下锂离子电池组的SOC估计提供了一种高精度低复杂度方案。 展开更多
关键词 SOC估计 BP神经网络 扩展卡尔曼滤波 梯度下降算法 随机森林 锂离子电池组
原文传递
上一页 1 2 75 下一页 到第
使用帮助 返回顶部