Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In orde...Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In order to mitigate the threat of geohazards to human engineering activities in the region,an overall understanding of the distribution pattern of geohazards and susceptibility assessment are necessary.In this paper,a gradient belt of the Western Sichuan Plateau and its zoning criteria were defined.Subsequently,on the basis of relief amplitude,distance to faults,rainfall,and human activities,three indicators of endogenic process were introduced:Bouguer gravity anomaly gradient,vertical deformation gradient,and horizontal deformation gradient.Thereafter,the distribution patterns of geohazards were investigated through mathematical statistics and ArcGIS software.By randomly selecting 10,449 hazards,a geohazard susceptibility map was generated using the Information Value(IV)model.Finally,the IV model was validated against 5224 hazards using the Area Under Curve(AUC)method.The results show that 47.6%of the geohazards were distributed in the zone of steep slope.Geohazards showed strong responses to distance to faults,human activities,and annual rainfall.The distribution of geohazards in the gradient belt of the Western Sichuan Plateau is more sensitive to vertical internal dynamics factors(such as vertical deformation gradient and Bouguer gravity anomaly gradient)without any apparent sensitivity to horizontal internal dynamics factors.The areas of high and very-high risk account for up to 32.22%,mainly distributed in the Longmenshan and Anning River faults.According to the AUC plot,the success rate of the IV model for generating the susceptibility map is 76%.This susceptibility map and geohazard distribution pattern can provide a reference for geological disaster monitoring,preparation of post-disaster emergency measures,and town planning.展开更多
The vertical deformation gradient can reflect the rate of vertical change in unit distance,and the vertical deformation velocity gradient can reflect the strength of the earth's crust tectonic activities. In this ...The vertical deformation gradient can reflect the rate of vertical change in unit distance,and the vertical deformation velocity gradient can reflect the strength of the earth's crust tectonic activities. In this paper,using long period leveling data combined with GPS data,the vertical deformation gradient values are calculated. Leveling data and GPS data are two different means of monitoring deformation,but the result is approximately the same vertical deformation gradient. The results show that the spatial distribution of the vertical deformation velocity gradient and tectonic distribution has an obvious correlation. The most significant gradient anomalies along the North-South Seismic Belt are Xianshuihe fault, Longmenshan fault and Xiaojiang-Zemuhe fault, while the second gradient anomalies in the northeastern Qinghai-Tibetan plateau are Zhuanglanghe fault and Lenglongling fault. The Menyuan M_S6. 4 earthquake in 2016 occurred in this abnormal area. However,according to the vertical deformation high gradient area distribution,there is also the possibility of an earthquake occurrence in the Tianzhu and Jingtai area.The area of convergence of three major fault zones is the strongest tectonically active region of the North-South Seismic Belt.展开更多
Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China....Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China. Then, inversion was conducted for the depth to study the depth variation of the boundary between the crust and upper mantle, namely the Mohorovicic discontinuity (Moho). The results demonstrate that the Moho depth in South China ranges from 30 to 40 km, and the crust thins from west to east, 27-29 km under the continent margin and shallow sea. We think it possible that the Tanlu fault crosses the Yangtze River and extends southwards along the Ganjiang and Wuchuan-Sihui faults to the South China Sea, and that there is an E-W hidden structural belt along 24.5°-26°.展开更多
In this study, a classic survey adjustment computation method was used for data obtained in the Inner Mongolia and Ningxia gravimetric networks between September 2013 and April 2015 so as to investigate the variation ...In this study, a classic survey adjustment computation method was used for data obtained in the Inner Mongolia and Ningxia gravimetric networks between September 2013 and April 2015 so as to investigate the variation of gravity before the Alxa Zuoqi M5.8 earthquake. The relationship between gravity variation and the Alxa Zuoqi M5.8 earthquake was analyzed. The results showed that: (1) the severe variation in gravity field at the test sites before the Alxa Zuoqi M5.8 earthquake, as well as the subsequent accelerated rising, might be an earthquake precursor; (2) the Alxa Zuoqi M5.8 earthquake occurred at the turning point where the high-gravity gradient zone changed from the NE direction to NW.展开更多
文摘Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In order to mitigate the threat of geohazards to human engineering activities in the region,an overall understanding of the distribution pattern of geohazards and susceptibility assessment are necessary.In this paper,a gradient belt of the Western Sichuan Plateau and its zoning criteria were defined.Subsequently,on the basis of relief amplitude,distance to faults,rainfall,and human activities,three indicators of endogenic process were introduced:Bouguer gravity anomaly gradient,vertical deformation gradient,and horizontal deformation gradient.Thereafter,the distribution patterns of geohazards were investigated through mathematical statistics and ArcGIS software.By randomly selecting 10,449 hazards,a geohazard susceptibility map was generated using the Information Value(IV)model.Finally,the IV model was validated against 5224 hazards using the Area Under Curve(AUC)method.The results show that 47.6%of the geohazards were distributed in the zone of steep slope.Geohazards showed strong responses to distance to faults,human activities,and annual rainfall.The distribution of geohazards in the gradient belt of the Western Sichuan Plateau is more sensitive to vertical internal dynamics factors(such as vertical deformation gradient and Bouguer gravity anomaly gradient)without any apparent sensitivity to horizontal internal dynamics factors.The areas of high and very-high risk account for up to 32.22%,mainly distributed in the Longmenshan and Anning River faults.According to the AUC plot,the success rate of the IV model for generating the susceptibility map is 76%.This susceptibility map and geohazard distribution pattern can provide a reference for geological disaster monitoring,preparation of post-disaster emergency measures,and town planning.
基金jointly funded by the Project of Science for Earthquake Resilience(XH17059)regular projects of Earthquake Monitoring and Prediction(16H38ZX345)
文摘The vertical deformation gradient can reflect the rate of vertical change in unit distance,and the vertical deformation velocity gradient can reflect the strength of the earth's crust tectonic activities. In this paper,using long period leveling data combined with GPS data,the vertical deformation gradient values are calculated. Leveling data and GPS data are two different means of monitoring deformation,but the result is approximately the same vertical deformation gradient. The results show that the spatial distribution of the vertical deformation velocity gradient and tectonic distribution has an obvious correlation. The most significant gradient anomalies along the North-South Seismic Belt are Xianshuihe fault, Longmenshan fault and Xiaojiang-Zemuhe fault, while the second gradient anomalies in the northeastern Qinghai-Tibetan plateau are Zhuanglanghe fault and Lenglongling fault. The Menyuan M_S6. 4 earthquake in 2016 occurred in this abnormal area. However,according to the vertical deformation high gradient area distribution,there is also the possibility of an earthquake occurrence in the Tianzhu and Jingtai area.The area of convergence of three major fault zones is the strongest tectonically active region of the North-South Seismic Belt.
基金Th is study was carried out during 2001-2003 and financially supposed by the National Natural Science Foundation of China(No.40074020)
文摘Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China. Then, inversion was conducted for the depth to study the depth variation of the boundary between the crust and upper mantle, namely the Mohorovicic discontinuity (Moho). The results demonstrate that the Moho depth in South China ranges from 30 to 40 km, and the crust thins from west to east, 27-29 km under the continent margin and shallow sea. We think it possible that the Tanlu fault crosses the Yangtze River and extends southwards along the Ganjiang and Wuchuan-Sihui faults to the South China Sea, and that there is an E-W hidden structural belt along 24.5°-26°.
基金supported by the China Earthquake Administration Earthquake Tracking Task Orientation(2016020202,2016010216,and 2016010220)the“Three Combination”project of the China Earthquake Administration(163201)+2 种基金the National Natural Science Foundation of China(41204058,41474064,and 41374088)the special earthquake research,China Earthquake Administration(201508009-08)the Director,Foundation of Institute of Seismology,China Earthquake Administration(IS201326123)
文摘In this study, a classic survey adjustment computation method was used for data obtained in the Inner Mongolia and Ningxia gravimetric networks between September 2013 and April 2015 so as to investigate the variation of gravity before the Alxa Zuoqi M5.8 earthquake. The relationship between gravity variation and the Alxa Zuoqi M5.8 earthquake was analyzed. The results showed that: (1) the severe variation in gravity field at the test sites before the Alxa Zuoqi M5.8 earthquake, as well as the subsequent accelerated rising, might be an earthquake precursor; (2) the Alxa Zuoqi M5.8 earthquake occurred at the turning point where the high-gravity gradient zone changed from the NE direction to NW.