To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine...To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.展开更多
This paper presents a method for lane boundaries detection which is not affected by the shadows, illumination and un-even road conditions. This method is based upon processing grayscale images using local gradient fea...This paper presents a method for lane boundaries detection which is not affected by the shadows, illumination and un-even road conditions. This method is based upon processing grayscale images using local gradient features, characteris-tic spectrum of lanes, and linear prediction. Firstly, points on the adjacent right and left lane are recognized using the local gradient descriptors. A simple linear prediction model is deployed to predict the direction of lane markers. The contribution of this paper is the use of vertical gradient image without converting into binary image(using suitable thre-shold), and introduction of characteristic lane gradient spectrum within the local window to locate the preciselane marking points along the horizontal scan line over the image. Experimental results show that this method has greater tolerance to shadows and low illumination conditions. A comparison is drawn between this method and recent methods reported in the literature.展开更多
Face detection is a critical component inmodern security,surveillance,and human-computer interaction systems,with widespread applications in smartphones,biometric access control,and public monitoring.However,detecting...Face detection is a critical component inmodern security,surveillance,and human-computer interaction systems,with widespread applications in smartphones,biometric access control,and public monitoring.However,detecting faces with high levels of occlusion,such as those covered by masks,veils,or scarves,remains a significant challenge,as traditional models often fail to generalize under such conditions.This paper presents a hybrid approach that combines traditional handcrafted feature extraction technique called Histogram of Oriented Gradients(HOG)and Canny edge detection with modern deep learning models.The goal is to improve face detection accuracy under occlusions.The proposed method leverages the structural strengths of HOG and edge-based object proposals while exploiting the feature extraction capabilities of Convolutional Neural Networks(CNNs).The effectiveness of the proposed model is assessed using a custom dataset containing 10,000 heavily occluded face images and a subset of the Common Objects in Context(COCO)dataset for non-face samples.The COCO dataset was selected for its variety and realism in background contexts.Experimental evaluations demonstrate significant performance improvements compared to baseline CNN models.Results indicate that DenseNet121 combined with HOG outperforms other counterparts in classification metrics with an F1-score of 87.96%and precision of 88.02%.Enhanced performance is achieved through reduced false positives and improved localization accuracy with the integration of object proposals based on Canny and contour detection.While the proposed method increases inference time from 33.52 to 97.80 ms,it achieves a notable improvement in precision from 80.85% to 88.02% when comparing the baseline DenseNet121 model to its hybrid counterpart.Limitations of the method include higher computational cost and the need for careful tuning of parameters across the edge detection,handcrafted features,and CNN components.These findings highlight the potential of combining handcrafted and learned features for occluded face detection tasks.展开更多
基金National Natural Science Foundation of China(No.519705449)。
文摘To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.
文摘This paper presents a method for lane boundaries detection which is not affected by the shadows, illumination and un-even road conditions. This method is based upon processing grayscale images using local gradient features, characteris-tic spectrum of lanes, and linear prediction. Firstly, points on the adjacent right and left lane are recognized using the local gradient descriptors. A simple linear prediction model is deployed to predict the direction of lane markers. The contribution of this paper is the use of vertical gradient image without converting into binary image(using suitable thre-shold), and introduction of characteristic lane gradient spectrum within the local window to locate the preciselane marking points along the horizontal scan line over the image. Experimental results show that this method has greater tolerance to shadows and low illumination conditions. A comparison is drawn between this method and recent methods reported in the literature.
基金funded by A’Sharqiyah University,Sultanate of Oman,under Research Project Grant Number(BFP/RGP/ICT/22/490).
文摘Face detection is a critical component inmodern security,surveillance,and human-computer interaction systems,with widespread applications in smartphones,biometric access control,and public monitoring.However,detecting faces with high levels of occlusion,such as those covered by masks,veils,or scarves,remains a significant challenge,as traditional models often fail to generalize under such conditions.This paper presents a hybrid approach that combines traditional handcrafted feature extraction technique called Histogram of Oriented Gradients(HOG)and Canny edge detection with modern deep learning models.The goal is to improve face detection accuracy under occlusions.The proposed method leverages the structural strengths of HOG and edge-based object proposals while exploiting the feature extraction capabilities of Convolutional Neural Networks(CNNs).The effectiveness of the proposed model is assessed using a custom dataset containing 10,000 heavily occluded face images and a subset of the Common Objects in Context(COCO)dataset for non-face samples.The COCO dataset was selected for its variety and realism in background contexts.Experimental evaluations demonstrate significant performance improvements compared to baseline CNN models.Results indicate that DenseNet121 combined with HOG outperforms other counterparts in classification metrics with an F1-score of 87.96%and precision of 88.02%.Enhanced performance is achieved through reduced false positives and improved localization accuracy with the integration of object proposals based on Canny and contour detection.While the proposed method increases inference time from 33.52 to 97.80 ms,it achieves a notable improvement in precision from 80.85% to 88.02% when comparing the baseline DenseNet121 model to its hybrid counterpart.Limitations of the method include higher computational cost and the need for careful tuning of parameters across the edge detection,handcrafted features,and CNN components.These findings highlight the potential of combining handcrafted and learned features for occluded face detection tasks.