The good combination of mechanical and wear properties for cemented carbides is crucial.In this work,the wear behavior of functionally graded cemented carbide(FGCC)and non-graded cemented carbide(CC),with CoNiFeCr mul...The good combination of mechanical and wear properties for cemented carbides is crucial.In this work,the wear behavior of functionally graded cemented carbide(FGCC)and non-graded cemented carbide(CC),with CoNiFeCr multi-principal-element alloy(MPEA)binder,has been investigated by performing sliding wear tests and composition characterization.The results showed that compared with CC,FGCC had higher hardness,stronger fracture toughness,better wear performance,and similar TRS.FGCCs exhibited lower wear rates(3.44×10^(−7)–6.95×10^(−6)mm^(3)/(N m))and coefficients of friction(COFs)(0.27–0.39)than CCs from RT to 600℃due to mitigation of multiple risks caused by binder removal,fragmentation and pull-out of WC grains,high-temperature oxidation and softening.In the low-temperature wear stage,the MPEA binder underwent dynamic recrystallization(DRX)and twinning deformation before removing from the surface.The binder removal caused dislocation pile-ups and stacking faults(SFs)to form under high stress,resulting in fragmentation and pull-out of WC grains.The low-temperature wear was dominated by abrasive wear and adhesive wear,with a low wear rate and a high and unstable COF.In the high-temperature wear stage,initial pitting oxidation of WC grains generated many subgrain boundaries,reducing heat transfer and exacerbating oxidation,resulting in an oxide layer enriched with WO3,Mx Oy,and MWO4.High-temperature wear was dominated by oxidation wear and high-temperature softening,with a high wear rate and a low and smooth COF.The results from the present study do not only provide theoretical guidance for an understanding of the antiwear mechanism of WC-CoNiFeCr,but also a new approach for the preparation of cemented carbides with high wear resistance.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
BACKGROUND Endoscopic submucosal dissection(ESD)has become a widely accepted,minimally invasive treatment for gastrointestinal submucosal tumors.It has been reported that humanistic nursing care with graded psychologi...BACKGROUND Endoscopic submucosal dissection(ESD)has become a widely accepted,minimally invasive treatment for gastrointestinal submucosal tumors.It has been reported that humanistic nursing care with graded psychological interventions can effectively enhance patients’physical activity in patients,reduce postoperative complications,and improve their postoperative quality of life.AIM To investigate the effects of combining humanistic care with graded psychological support on nursing satisfaction and quality of life in patients undergoing ESD for gastrointestinal submucosal tumors.METHODS A retrospective analysis was conducted on the clinical data of 180 patients who underwent ESD surgery for gastrointestinal submucosal tumors at our hospital between March 2021 and February 2023.Patients were allocated into groups based on the nursing care they received:The control group,which received routine care(n=90),and the observation group,which was subjected to humanistic nursing care in combination with graded psychological support(n=90).Patient anxiety and depression were assessed using the self-rating anxiety scale(SAS)and self-rating depression scale(SDS).Quality of life was evaluated using the shortform 36 health survey,and additional indications such as time to first food intake,surgery duration,length of hospital stay,nursing satisfaction,and adverse reactions were also recorded.Data was analyzed using SPSS22.0,with t-tests employed for continuous variables andχ2 tests for categorical data.RESULTS Patients in the observation group experienced significantly shorter times to first postoperative meal,surgery,and hospital stay compared to the control group.After the intervention,the SAS score of the observation group was 43.17±5.68,and the SDS score was 41.57±6.52,both significantly lower than those of the control group,with SAS score of 52.38±5.21 and SDS score of 51.23±8.25.In addition,the observation group scored significantly higher in daily living,physical function,psychological well-being,and social functioning(80.01±6.39,83.59±6.89,81.69±5.34,and 85.23±6.05,respectively).Moreover,the observation group also exhibited higher satisfaction and selfefficacy scores and a lower incidence of adverse reactions compared to the control group(P<0.05).CONCLUSION For patients undergoing ESD for gastrointestinal submucosal tumors,humanistic nursing care in combination with graded psychological nursing care significantly shorten the times to first postoperative meal,surgery,and hospital stay,effectively alleviates anxiety and depression,improves quality of life and nursing satisfaction,and mitigate the incidence of adverse reactions.展开更多
Current modifications of Ti-based materials with porous scaffolds for achieving biological fixation often decrease corrosion fatigue strength(σ_(cf))of the resultant implants,thereby shortening their service lifes-pa...Current modifications of Ti-based materials with porous scaffolds for achieving biological fixation often decrease corrosion fatigue strength(σ_(cf))of the resultant implants,thereby shortening their service lifes-pan.To resolve this issue,in the present,a step-wise graded porous Ti-6Al-7Nb scaffold was additively manufactured on optimally surface mechanical attrition treated(SMATed)Ti-6Al-7Nb(specifically de-noted as S-Ti6Al7Nb)using laser powder bed fusion(PBF)technology.The microstructure,bond strength,residual stress distribution,and corrosion fatigue behavior of porous scaffolds modified S-Ti6Al7Nb were investigated and compared with those of mechanically polished Ti-6Al-7Nb(P-Ti6Al7Nb),S-Ti6Al7Nb,and porous scaffolds modified P-Ti6Al7Nb.Results showed that corrosion fatigue of porous scaffolds modi-fied Ti-6Al-7Nb was propagation controlled.Moreover,the crack propagation behavior in the PBF scaf-fold’s fusion zone(FZ)and heat-affected zone(HAZ),exhibiting insensitivity to the microstructural con-figurations characterized by columnar prior-βgrain(PBG)boundaries and acicularα''martensites,cou-pled with the PBF-induced residual tensile stresses in these regions,resulted in a considerable decrease inσ_(cf) for porous scaffolds modified P-Ti6Al7Nb compared to P-Ti6Al7Nb.In contrast,step-wise graded porous scaffold-modified S-Ti6Al7Nb demonstrated an improvedσ_(cf) which was even higher than that of P-Ti6Al7Nb.Such an advancement in corrosion fatigue strength is primarily attributed to the presence of residual compressive stresses within the underlying S-Ti6Al7Nb substrate,extending beyond FZ and HAZ.These stresses increased the crack propagation threshold,leading to crack deflection/branching and increased crack-path tortuosity,thereby synergistically markedly enhancing the crack propagation resis-tance of porous scaffolds modified S-Ti6Al7Nb.展开更多
SS316L alloy coupled with Inconel625 alloy were combined with Ti6Al4V or Inconel718 alloy through wire arc additive manufacturing technique to manufacture functionally graded materials(FGMs).Two FGMs,namely 60%SS316L+...SS316L alloy coupled with Inconel625 alloy were combined with Ti6Al4V or Inconel718 alloy through wire arc additive manufacturing technique to manufacture functionally graded materials(FGMs).Two FGMs,namely 60%SS316L+20%Inconel625+20%Ti6Al4V composite and 60%SS316L+20%Inconel625+20%Inconel718 composite,were prepared.The tensile strength,elongation,yield strength,hardness,cross section area of the parent material,and composition were analysed.Results illustrate that the 60%SS316L+20%Inconel625+20%Inconel718 composite has better mechanical properties than 60%SS316L+20%Inconel625+20%Ti6Al4V composite,and the comprehensive properties of 60%SS316L+20%Inconel 625+20%Ti6Al4V composite are better than those of the parent material SS316L.Hence,the composite of 60%SS316L+20%Inconel625+20%Inconel718 is optimal.Due to its high strength,the 60%SS316L+20%Inconel625+20%Inconel718 composite has great application potential in the field of high pressure pneumatic tool and defence tool.展开更多
Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and th...Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and their acoustic properties were characterized to match the design path.The parallelism of the Al-Cu GM was confirmed using a three-dimensional surface profilometry machine.A one-stage light-gas gun was used to launch the Al-Cu GM,impacting an Al-LiF target at a velocity of 400 m/s.The results of the experimental strain rate demonstrate that the Al-Cu GMs can realize the precise control of the strain rate within the range of 10^(4)‒10^(5)/s in the high-speed impact experiments.展开更多
Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy depositio...Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy deposition(EB-DED)technique,including three samples with composition mutation of 100%,composition change rate of 10%and 30%.Results show that the composition-change rate significantly affects the microstructure and mechanical properties of the samples.In the sample with abrupt change of composition,the sharp shift in composition between 304 stainless steel and Mo leads to a great difference in the microstructure and hardness near the interface between the two materials.With the increase in the number of gradient layers,the composition changes continuously along the direction of deposition height,and the microstructure morphology shows a smooth transition from 304 stainless steel to Mo,which is gradually transformed from columnar crystal to dendritic crystal.Elements Fe,Mo,and other major elements transform linearly along the gradient direction,with sufficient interlayer diffusion between the deposited layers,leading to good metallurgical bonding.The smaller the change in composition gradient,the greater the microhardness value along the deposition direction.When the composition gradient is 10%,the gradient layer exhibits higher hardness(940 HV)and excellent resistance to surface abrasion,and the overall compressive properties of the samples are better,with the compressive fracture stress in the top region reaching 750.05±14 MPa.展开更多
This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functio...This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functionally graded(FG)materials such as conventional,axial,bi-directional,and tri-directional,and the material distribution models like power-law,exponential,trigonometric,polynomial functions,etc.It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity,nonlocal strain gradient,modified couple stress,and consistent couple stress theories,which are essential to predict the behavior of structures at small scales.The review covers the mechanical analysis of MDFG nanostructures in nanobeams,nanopipes,nanoplates,and nanoshells and their dynamic and static responses under different loading conditions.The effect of multi-directional material gradation on stiffness,stability and vibration is discussed.Moreover,the review highlights the need for more advanced analytical,semi-analytical,and numerical methods to solve the complex vibration problems ofMDFG nanostructures.It is evident that the continued development of these methods is crucial for the design,optimization,and real-world application of MDFG nanostructures in advanced engineering fields like aerospace,biomedicine,and micro/nanoelectromechanical systems(MEMS/NEMS).This study is a reference for researchers and engineers working in the domain of MDFG nanostructures.展开更多
Fan deltas are usually constructed through episodic flood event with debris flow transforming to hyper-concentrated flow during sediments proceeding. However, the role of topography in controlling the flow transformat...Fan deltas are usually constructed through episodic flood event with debris flow transforming to hyper-concentrated flow during sediments proceeding. However, the role of topography in controlling the flow transformation and sediments aggradation has been less studied. This constrain studies of sediment distribution and understanding of graded profile. For lake basin sequences, geomorphological control is much stronger than lake level rise and fall. Under extreme conditions, sediments can still prograde when the lake level rises. Therefore, describing the influence of geomorphology on the flow transformation and stacking pattern of the lobes can provide a deeper understanding of the controlling factors of the lake basin stratigraphy sequence. Xiligou lake (XLG) fan delta from Xisai Basin provides an optimal case for addressing this issue. Three lobes developed on the XLG fan delta with significant differences in their morphologies, architectures, lithofacies, sediment distributions and topographies. Through trenching, drone photography, and satellite data, we analyzed the structure of the sediments and the distribution of sedimentary facies. Based on the analysis of debris flow and hyper-concentrated flow deposits, two transformation models corresponding to different topographies were established. Sediment unloading is caused by a frictional reduction or a sudden momentum loss in the sediments flow's carrying capacity, allowing the debris flow transforms to hyper-concentrated flow and then to stream flow during the movement. The role of topography in controlling sediment flow transformation and sediment distribution is clarified through forces analysis of sediment grain. The topographic gradient of the linear slope is constant, so the direction of fluid movement is consistent with the topographic direction. Therefore, sediment flows move on linear slope without collision with the bed and there is no sudden loss of momentum. The gradual or sudden reduction in topographic gradient of concave slopes forces a constant or sudden change in the direction of fluid movement, which facilitates the unloading of sediments and the transformation of flow. The sudden change of topography forces unloading of viscous component, and the non-viscous component pass over to form hyper-concentrated flow, often accompanied by remobilized large gravels. The graded profile was an equilibrium between the dynamics and resistance of sediment transport. Changes in lake level affect the graded profile by changing the elevation of sediment transport, which is the total gravitational potential energy. The instantaneous graded profile and temporary graded profile are different scales of equilibrium corresponding to hydrodynamic equilibrium and depositional trend respectively. This study reveals the role of geomorphological dynamics in controlling sedimentary body progradation, thus providing a new perspective on the analysis of lake basin stratigraphy sequence.展开更多
Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composit...Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composite nanostructures under small scale,rotor,and temperature coupling effects are investigated.The nanotube is composed of functionally graded materials(FGMs),and different volume fraction functions are utilized to control the distribution of material properties.Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling,and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained.By conducting dimensionless analysis,it is found that compared to the Timoshenko nano-beam model,the conventional Euler–Bernoulli(E-B)model holds the same flutter frequency in the supercritical region,while it usually overestimates the higher-order precession frequencies.The nonlocal,thermal,and flowing effects all can lead to buckling or different kinds of coupled flutter in the system.The material distribution of the P-type FGM nanotube can also induce coupled flutter,while that of the S-type FGM nanotube has no impact on the stability of the system.This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices.展开更多
The fabrication of Invar/MnCu functionally graded material(FGM)through directed energy deposition(DED)can satisfy the demands for precision devices in aerospace,providing lightweight properties and integrating thermal...The fabrication of Invar/MnCu functionally graded material(FGM)through directed energy deposition(DED)can satisfy the demands for precision devices in aerospace,providing lightweight properties and integrating thermal stability and vibration damping capabilities.However,basic research on Invar/MnCu FGM is still lacking,hindering its potential applications.To address this gap,this study was conducted using mixed powders and consistent process parameters to print experiments for Invar/MnCu FGM and homogeneous samples.Phases,microstructures,compositions,and thermal expansion properties were thoroughly examined.Three types of defects were detected in the Invar/MnCu FGM sample:unmelted Invar 36 powders,cracks,and pores.The mechanism of unmelted powders was deeply discussed,attributing it to material properties influencing laser absorptivity,the required time for melting powder,and effects on solidus temperature.The mechanism of cracks was also discussed,attributing it to theγ-Fe dendritic structure causing low melting point metal to form an intergranular liquid film,harmful secondary phases mismatched with the terminal alloy,and obvious tensile stresses during the DED process.Additionally,an effective strategy was proposed to reduce defects in Invar/MnCu FGM.After optimization,the specimens exhibited excellent tensile properties,with a yield strength of 262±5 MPa,an ultimate tensile strength of 316±7 MPa,and an elongation of 3%±1%.This research provides valuable references and insights for subsequent work,offering robust support for better understanding and designing other FGM.展开更多
This study investigates the nonlinear dynamic properties of rotating functionally graded sandwich rectangular plates in a thermal environment.The nonlinear vibration equations for a rotating metal-ceramic functionally...This study investigates the nonlinear dynamic properties of rotating functionally graded sandwich rectangular plates in a thermal environment.The nonlinear vibration equations for a rotating metal-ceramic functionally graded sandwich rectangular plate in a thermal environment are derived using classical thin plate theory and Hamilton’s principle,considering geometric nonlinearity,temperature-dependent material properties,and power law distribution of components through the thickness.With cantilever boundary conditions,the flexural nonlinear differential equations of the rectangular sandwich plate are obtained via the Galerkin method.Since the natural vibration differential equations exhibit nonlinear characteristics,the multiscale method is employed to derive the expression for nonlinear natural frequency.An example analysis reveals how the natural frequency of a functionally graded sandwich rectangular plate varies with rotational speed and temperature.Results show that the nonlinear/linear frequency ratio increases with rotational angular velocity Ω and thickness-to-length ratio h/a,follows a cosine-like periodic pattern with the setting angle,and shows a sharp decrease followed by a rapid increase with increasing width-to-length ratio b/a.The derived analytical solutions for nonlinear frequency provide valuable insights for assessing the dynamic characteristics of functionally graded structures.展开更多
BACKGROUND Colorectal cancer(CRC)is a globally prevalent gastrointestinal malignant cancer,especially in elderly patients.Currently,surgery resection remains the primary treatment due to its favorable therapeutic outc...BACKGROUND Colorectal cancer(CRC)is a globally prevalent gastrointestinal malignant cancer,especially in elderly patients.Currently,surgery resection remains the primary treatment due to its favorable therapeutic outcomes.However,postoperative deterioration in nutritional status and quality of life(QoL)remains a concern.The geriatric nutritional risk index(GNRI),which is calculated based on serum albumin levels and the ratio of normal body weight to ideal body weight,is easily accessible and accurate,making it increasingly popular in clinical practice.AIM To investigate the impact of GNRI-guided tiered nutritional interventions on postoperative nutritional recovery and QoL in elderly CRC patients.METHODS A retrospective analysis was conducted on 135 elderly CRC patients undergoing radical resection at our hospital from September 2022 to December 2024.Participants were divided into two cohorts:The research group(n=61)received GNRI-based graded nutritional support,while the control group(n=65)received conventional nutritional intervention.Clinical indicators,such as postoperative passage of gas by anus,incidence/duration of postoperative fever,hospitalization length and costs,were compared between the two groups.Nutritional biomarkers,including hemoglobin,prealbumin,transferrin,and Patient-Generated Subjective Global Assessment scores were assessed on postoperative day 1 and post-intervention(day 1 after intervention).The Generic QoL Inventory-74 was employed to assess physical function,social function,material life,and psychological function in the two groups.Immunoglobulin(Ig)(IgG,IgA,IgM)and inflammatory markers[nuclear factor kappa B,interleukin(IL)-1,tumor necrosis factor-α,IL-8]were compared between groups.Complication rates were also monitored.RESULTS The research group showed significantly faster postoperative passage of gas by anus,fewer instances of fever,reduced fever duration,shorter hospitalization duration,and lower costs compared with the control group(P<0.05).Following intervention,the research group exhibited higher levels of hemoglobin,prealbumin,and transferrin,and lower Patient-Generated Subjective Global Assessment scores vs the control group(P<0.05).Scores for physical function,social function,material life,and psychological function showed substantial improvement(P<0.05).Levels of IgG,IgA,and IgM were significantly elevated in the research group(P<0.05),while nuclear factor kappa B,IL-1,tumor necrosis factor-α,and IL-8 levels were noticeably lowered vs the control group(P<0.05).The incidence of overall complications within the research group reached 24.59%,notably lower than that(43.08%)observed in the control group(P<0.05).CONCLUSION GNRI-based graded nutritional intervention in elderly CRC patients can significantly improve postoperative recovery,enhance their nutritional status and QoL,promote immune function recovery,attenuate inflammation,and lower the incidence of postoperative complications.This protocol represents a clinically viable strategy for optimizing postoperative care.展开更多
In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the max...In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.展开更多
It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and ...It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces.展开更多
Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), mer...Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), merging the characteristics of polymers and ionic liquids, have emerged as viable options for the development of FGMs given their tunable skeleton, ionic conductivity, and compatibility with various functional materials. This review highlights the latest advancements in the design strategies of FGMs based on porous PILs, focusing on single and multi-gradient structures. Furthermore, we also highlight their emerging applications in molecular recognition, sensing, adsorption, separation, and catalysis. By exploring the interplay between porosity, ionic functionality, and gradient architecture, this review offers perspectives on the prospects of PIL-based FGMs for tackling global challenges in energy, environment, and healthcare.展开更多
The utilization of graded Al powders offers the possibility to adjust the combustion performance of Al powders,while simultaneously safeguarding their energy properties.In this paper,a series of graded Al powder have ...The utilization of graded Al powders offers the possibility to adjust the combustion performance of Al powders,while simultaneously safeguarding their energy properties.In this paper,a series of graded Al powder have been incorporated into the typical Al@AP composites through the spray drying technique.The thermal behavior,ignition and combustion characteristics were comprehensively evaluated and compared.The experimental results showed that with the varying inclusion of the graded Al,the heat of reaction exhibited a significant change,ranging from 9090 J·g^(-1) to 11036 J·g^(-1),which was strongly dependent on the particle size of Al.The combination of Al with diverse range of particle sizes in graded configuration serves to significantly enhance the decomposition of AP,resulting in the disappearance of the LTD stage and a conspicuous decrease of at least 11.7℃ in the peak temperature of the HTD.Furthermore,the maximum burning rate achieved by the Al-3@AP composite was 33.6 mm·s^(-1),which was exactly twice as high as that of the graded Al-1@AP composite with the lowest burning rate.Diffraction peaks corresponding to unburned Al were detected in the condensed combustion products of Al-1@AP,and the combustion images clearly indicated an incomplete combustion tendency for this sample.In contrast,a well-designed gradation of Al powders,such as a combination of fine Al powders with a particle size below 5μm,has proven to be the most conducive to enhancing the combustion efficiency of the composites.展开更多
A novel elastic metamaterial is proposed with the aim of achieving lowfrequency broad bandgaps and bandgap regulation.The band structure of the proposed metamaterial is calculated based on the Floquet-Bloch theorem,an...A novel elastic metamaterial is proposed with the aim of achieving lowfrequency broad bandgaps and bandgap regulation.The band structure of the proposed metamaterial is calculated based on the Floquet-Bloch theorem,and the boundary modes of each bandgap are analyzed to understand the effects of each component of the unit cell on the bandgap formation.It is found that the metamaterials with a low elastic modulus of ligaments can generate flexural wave bandgaps below 300 Hz.Multi-frequency vibrations can be suppressed through the selective manipulation of bandgaps.The dual-graded design of metamaterials that can significantly improve the bandgap width is proposed based on parametric studies.A new way that can regulate the bandgap is revealed by studying the graded elastic modulus in the substrate.The results demonstrate that the nonlinear gradient of the elastic modulus in the substrate offers better bandgap performance.Based on these analyses,the proposed elastic metamaterials can pave the way for multi-frequency vibration control,low-frequency bandgap broadening,and bandgap tuning.展开更多
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r...Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.展开更多
Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by ad...Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by adding various reinforcements,however,this enhancement comes at the cost of reduced fracture toughness.This paradox of increased wear resistance versus decreased fracture toughness in aluminum alloys can be resolved by using functionally graded materials (FGMs).This study focuses on the abrasive wear behavior of functional graded aluminum matrix composites reinforced with Al_(3)Ti particles.The wear properties of the composites were investigated by considering the characteristics of the composite such as matrix type and various composite zones,as well as the wear parameters such as abrasive particle diameter,load,sliding speed and distance.Taguchi method was used in the abrasive wear tests in order to get more reliable results in a timeefficient manner.Experiment recipes were created based on the L_(27)(3^(6)) orthogonal series.As a result of the study,it is observed that the wear resistance of the composites increases with an increase in Al_(3)Ti reinforcement content and hardness of the matrix.In addition,the size of abrasive particles and the applied load are significant factors affecting abrasive wear.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3701800)Special funding support for the Yuelu Mountain National University Science and Technology City“Ranking the Top of the List”Research Project:(Tunnel Boring Machine High-performance Long-life Cutting Tools)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘The good combination of mechanical and wear properties for cemented carbides is crucial.In this work,the wear behavior of functionally graded cemented carbide(FGCC)and non-graded cemented carbide(CC),with CoNiFeCr multi-principal-element alloy(MPEA)binder,has been investigated by performing sliding wear tests and composition characterization.The results showed that compared with CC,FGCC had higher hardness,stronger fracture toughness,better wear performance,and similar TRS.FGCCs exhibited lower wear rates(3.44×10^(−7)–6.95×10^(−6)mm^(3)/(N m))and coefficients of friction(COFs)(0.27–0.39)than CCs from RT to 600℃due to mitigation of multiple risks caused by binder removal,fragmentation and pull-out of WC grains,high-temperature oxidation and softening.In the low-temperature wear stage,the MPEA binder underwent dynamic recrystallization(DRX)and twinning deformation before removing from the surface.The binder removal caused dislocation pile-ups and stacking faults(SFs)to form under high stress,resulting in fragmentation and pull-out of WC grains.The low-temperature wear was dominated by abrasive wear and adhesive wear,with a low wear rate and a high and unstable COF.In the high-temperature wear stage,initial pitting oxidation of WC grains generated many subgrain boundaries,reducing heat transfer and exacerbating oxidation,resulting in an oxide layer enriched with WO3,Mx Oy,and MWO4.High-temperature wear was dominated by oxidation wear and high-temperature softening,with a high wear rate and a low and smooth COF.The results from the present study do not only provide theoretical guidance for an understanding of the antiwear mechanism of WC-CoNiFeCr,but also a new approach for the preparation of cemented carbides with high wear resistance.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
文摘BACKGROUND Endoscopic submucosal dissection(ESD)has become a widely accepted,minimally invasive treatment for gastrointestinal submucosal tumors.It has been reported that humanistic nursing care with graded psychological interventions can effectively enhance patients’physical activity in patients,reduce postoperative complications,and improve their postoperative quality of life.AIM To investigate the effects of combining humanistic care with graded psychological support on nursing satisfaction and quality of life in patients undergoing ESD for gastrointestinal submucosal tumors.METHODS A retrospective analysis was conducted on the clinical data of 180 patients who underwent ESD surgery for gastrointestinal submucosal tumors at our hospital between March 2021 and February 2023.Patients were allocated into groups based on the nursing care they received:The control group,which received routine care(n=90),and the observation group,which was subjected to humanistic nursing care in combination with graded psychological support(n=90).Patient anxiety and depression were assessed using the self-rating anxiety scale(SAS)and self-rating depression scale(SDS).Quality of life was evaluated using the shortform 36 health survey,and additional indications such as time to first food intake,surgery duration,length of hospital stay,nursing satisfaction,and adverse reactions were also recorded.Data was analyzed using SPSS22.0,with t-tests employed for continuous variables andχ2 tests for categorical data.RESULTS Patients in the observation group experienced significantly shorter times to first postoperative meal,surgery,and hospital stay compared to the control group.After the intervention,the SAS score of the observation group was 43.17±5.68,and the SDS score was 41.57±6.52,both significantly lower than those of the control group,with SAS score of 52.38±5.21 and SDS score of 51.23±8.25.In addition,the observation group scored significantly higher in daily living,physical function,psychological well-being,and social functioning(80.01±6.39,83.59±6.89,81.69±5.34,and 85.23±6.05,respectively).Moreover,the observation group also exhibited higher satisfaction and selfefficacy scores and a lower incidence of adverse reactions compared to the control group(P<0.05).CONCLUSION For patients undergoing ESD for gastrointestinal submucosal tumors,humanistic nursing care in combination with graded psychological nursing care significantly shorten the times to first postoperative meal,surgery,and hospital stay,effectively alleviates anxiety and depression,improves quality of life and nursing satisfaction,and mitigate the incidence of adverse reactions.
基金the National Key Research and Development Program of China(Grant No.2023YFC2412600)the National Natural Science Foundation of China(Grant No.51971171)for financially supporting this work.
文摘Current modifications of Ti-based materials with porous scaffolds for achieving biological fixation often decrease corrosion fatigue strength(σ_(cf))of the resultant implants,thereby shortening their service lifes-pan.To resolve this issue,in the present,a step-wise graded porous Ti-6Al-7Nb scaffold was additively manufactured on optimally surface mechanical attrition treated(SMATed)Ti-6Al-7Nb(specifically de-noted as S-Ti6Al7Nb)using laser powder bed fusion(PBF)technology.The microstructure,bond strength,residual stress distribution,and corrosion fatigue behavior of porous scaffolds modified S-Ti6Al7Nb were investigated and compared with those of mechanically polished Ti-6Al-7Nb(P-Ti6Al7Nb),S-Ti6Al7Nb,and porous scaffolds modified P-Ti6Al7Nb.Results showed that corrosion fatigue of porous scaffolds modi-fied Ti-6Al-7Nb was propagation controlled.Moreover,the crack propagation behavior in the PBF scaf-fold’s fusion zone(FZ)and heat-affected zone(HAZ),exhibiting insensitivity to the microstructural con-figurations characterized by columnar prior-βgrain(PBG)boundaries and acicularα''martensites,cou-pled with the PBF-induced residual tensile stresses in these regions,resulted in a considerable decrease inσ_(cf) for porous scaffolds modified P-Ti6Al7Nb compared to P-Ti6Al7Nb.In contrast,step-wise graded porous scaffold-modified S-Ti6Al7Nb demonstrated an improvedσ_(cf) which was even higher than that of P-Ti6Al7Nb.Such an advancement in corrosion fatigue strength is primarily attributed to the presence of residual compressive stresses within the underlying S-Ti6Al7Nb substrate,extending beyond FZ and HAZ.These stresses increased the crack propagation threshold,leading to crack deflection/branching and increased crack-path tortuosity,thereby synergistically markedly enhancing the crack propagation resis-tance of porous scaffolds modified S-Ti6Al7Nb.
文摘SS316L alloy coupled with Inconel625 alloy were combined with Ti6Al4V or Inconel718 alloy through wire arc additive manufacturing technique to manufacture functionally graded materials(FGMs).Two FGMs,namely 60%SS316L+20%Inconel625+20%Ti6Al4V composite and 60%SS316L+20%Inconel625+20%Inconel718 composite,were prepared.The tensile strength,elongation,yield strength,hardness,cross section area of the parent material,and composition were analysed.Results illustrate that the 60%SS316L+20%Inconel625+20%Inconel718 composite has better mechanical properties than 60%SS316L+20%Inconel625+20%Ti6Al4V composite,and the comprehensive properties of 60%SS316L+20%Inconel 625+20%Ti6Al4V composite are better than those of the parent material SS316L.Hence,the composite of 60%SS316L+20%Inconel625+20%Inconel718 is optimal.Due to its high strength,the 60%SS316L+20%Inconel625+20%Inconel718 composite has great application potential in the field of high pressure pneumatic tool and defence tool.
基金Natural Science Foundation of Hubei Province(2024AFB432)National Natural Science Foundation of China(52171045,12302436,52302095)Research Fund of Jianghan University(2023JCYJ05)。
文摘Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and their acoustic properties were characterized to match the design path.The parallelism of the Al-Cu GM was confirmed using a three-dimensional surface profilometry machine.A one-stage light-gas gun was used to launch the Al-Cu GM,impacting an Al-LiF target at a velocity of 400 m/s.The results of the experimental strain rate demonstrate that the Al-Cu GMs can realize the precise control of the strain rate within the range of 10^(4)‒10^(5)/s in the high-speed impact experiments.
基金National Natural Science Foundation of China(51975286)。
文摘Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy deposition(EB-DED)technique,including three samples with composition mutation of 100%,composition change rate of 10%and 30%.Results show that the composition-change rate significantly affects the microstructure and mechanical properties of the samples.In the sample with abrupt change of composition,the sharp shift in composition between 304 stainless steel and Mo leads to a great difference in the microstructure and hardness near the interface between the two materials.With the increase in the number of gradient layers,the composition changes continuously along the direction of deposition height,and the microstructure morphology shows a smooth transition from 304 stainless steel to Mo,which is gradually transformed from columnar crystal to dendritic crystal.Elements Fe,Mo,and other major elements transform linearly along the gradient direction,with sufficient interlayer diffusion between the deposited layers,leading to good metallurgical bonding.The smaller the change in composition gradient,the greater the microhardness value along the deposition direction.When the composition gradient is 10%,the gradient layer exhibits higher hardness(940 HV)and excellent resistance to surface abrasion,and the overall compressive properties of the samples are better,with the compressive fracture stress in the top region reaching 750.05±14 MPa.
文摘This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functionally graded(FG)materials such as conventional,axial,bi-directional,and tri-directional,and the material distribution models like power-law,exponential,trigonometric,polynomial functions,etc.It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity,nonlocal strain gradient,modified couple stress,and consistent couple stress theories,which are essential to predict the behavior of structures at small scales.The review covers the mechanical analysis of MDFG nanostructures in nanobeams,nanopipes,nanoplates,and nanoshells and their dynamic and static responses under different loading conditions.The effect of multi-directional material gradation on stiffness,stability and vibration is discussed.Moreover,the review highlights the need for more advanced analytical,semi-analytical,and numerical methods to solve the complex vibration problems ofMDFG nanostructures.It is evident that the continued development of these methods is crucial for the design,optimization,and real-world application of MDFG nanostructures in advanced engineering fields like aerospace,biomedicine,and micro/nanoelectromechanical systems(MEMS/NEMS).This study is a reference for researchers and engineers working in the domain of MDFG nanostructures.
基金the Natural Science Foundation of China(42272124)the National Key R&D Program of China(2023YFF0804302)Quantitative anatomy of shallow fan deltas in western China project directed by Research Institute of Petroleum Exploration and Development(2020D-5008-03).
文摘Fan deltas are usually constructed through episodic flood event with debris flow transforming to hyper-concentrated flow during sediments proceeding. However, the role of topography in controlling the flow transformation and sediments aggradation has been less studied. This constrain studies of sediment distribution and understanding of graded profile. For lake basin sequences, geomorphological control is much stronger than lake level rise and fall. Under extreme conditions, sediments can still prograde when the lake level rises. Therefore, describing the influence of geomorphology on the flow transformation and stacking pattern of the lobes can provide a deeper understanding of the controlling factors of the lake basin stratigraphy sequence. Xiligou lake (XLG) fan delta from Xisai Basin provides an optimal case for addressing this issue. Three lobes developed on the XLG fan delta with significant differences in their morphologies, architectures, lithofacies, sediment distributions and topographies. Through trenching, drone photography, and satellite data, we analyzed the structure of the sediments and the distribution of sedimentary facies. Based on the analysis of debris flow and hyper-concentrated flow deposits, two transformation models corresponding to different topographies were established. Sediment unloading is caused by a frictional reduction or a sudden momentum loss in the sediments flow's carrying capacity, allowing the debris flow transforms to hyper-concentrated flow and then to stream flow during the movement. The role of topography in controlling sediment flow transformation and sediment distribution is clarified through forces analysis of sediment grain. The topographic gradient of the linear slope is constant, so the direction of fluid movement is consistent with the topographic direction. Therefore, sediment flows move on linear slope without collision with the bed and there is no sudden loss of momentum. The gradual or sudden reduction in topographic gradient of concave slopes forces a constant or sudden change in the direction of fluid movement, which facilitates the unloading of sediments and the transformation of flow. The sudden change of topography forces unloading of viscous component, and the non-viscous component pass over to form hyper-concentrated flow, often accompanied by remobilized large gravels. The graded profile was an equilibrium between the dynamics and resistance of sediment transport. Changes in lake level affect the graded profile by changing the elevation of sediment transport, which is the total gravitational potential energy. The instantaneous graded profile and temporary graded profile are different scales of equilibrium corresponding to hydrodynamic equilibrium and depositional trend respectively. This study reveals the role of geomorphological dynamics in controlling sedimentary body progradation, thus providing a new perspective on the analysis of lake basin stratigraphy sequence.
基金National Natural Science Foundation of China,12372025,Feng Liang,12072311,Feng Liang.
文摘Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composite nanostructures under small scale,rotor,and temperature coupling effects are investigated.The nanotube is composed of functionally graded materials(FGMs),and different volume fraction functions are utilized to control the distribution of material properties.Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling,and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained.By conducting dimensionless analysis,it is found that compared to the Timoshenko nano-beam model,the conventional Euler–Bernoulli(E-B)model holds the same flutter frequency in the supercritical region,while it usually overestimates the higher-order precession frequencies.The nonlocal,thermal,and flowing effects all can lead to buckling or different kinds of coupled flutter in the system.The material distribution of the P-type FGM nanotube can also induce coupled flutter,while that of the S-type FGM nanotube has no impact on the stability of the system.This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices.
基金supported by the National Key Research and Development Program of China(Nos.2022YFB4600300 and 2022YFB4600301)the National Natural Science Foundation of China(No.52175364)+1 种基金the ND Basic Research Funds of NPU(G2022WD)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2023-QZ-04).
文摘The fabrication of Invar/MnCu functionally graded material(FGM)through directed energy deposition(DED)can satisfy the demands for precision devices in aerospace,providing lightweight properties and integrating thermal stability and vibration damping capabilities.However,basic research on Invar/MnCu FGM is still lacking,hindering its potential applications.To address this gap,this study was conducted using mixed powders and consistent process parameters to print experiments for Invar/MnCu FGM and homogeneous samples.Phases,microstructures,compositions,and thermal expansion properties were thoroughly examined.Three types of defects were detected in the Invar/MnCu FGM sample:unmelted Invar 36 powders,cracks,and pores.The mechanism of unmelted powders was deeply discussed,attributing it to material properties influencing laser absorptivity,the required time for melting powder,and effects on solidus temperature.The mechanism of cracks was also discussed,attributing it to theγ-Fe dendritic structure causing low melting point metal to form an intergranular liquid film,harmful secondary phases mismatched with the terminal alloy,and obvious tensile stresses during the DED process.Additionally,an effective strategy was proposed to reduce defects in Invar/MnCu FGM.After optimization,the specimens exhibited excellent tensile properties,with a yield strength of 262±5 MPa,an ultimate tensile strength of 316±7 MPa,and an elongation of 3%±1%.This research provides valuable references and insights for subsequent work,offering robust support for better understanding and designing other FGM.
基金supported by the National Natural Science Foundation of China(No.11772090).
文摘This study investigates the nonlinear dynamic properties of rotating functionally graded sandwich rectangular plates in a thermal environment.The nonlinear vibration equations for a rotating metal-ceramic functionally graded sandwich rectangular plate in a thermal environment are derived using classical thin plate theory and Hamilton’s principle,considering geometric nonlinearity,temperature-dependent material properties,and power law distribution of components through the thickness.With cantilever boundary conditions,the flexural nonlinear differential equations of the rectangular sandwich plate are obtained via the Galerkin method.Since the natural vibration differential equations exhibit nonlinear characteristics,the multiscale method is employed to derive the expression for nonlinear natural frequency.An example analysis reveals how the natural frequency of a functionally graded sandwich rectangular plate varies with rotational speed and temperature.Results show that the nonlinear/linear frequency ratio increases with rotational angular velocity Ω and thickness-to-length ratio h/a,follows a cosine-like periodic pattern with the setting angle,and shows a sharp decrease followed by a rapid increase with increasing width-to-length ratio b/a.The derived analytical solutions for nonlinear frequency provide valuable insights for assessing the dynamic characteristics of functionally graded structures.
文摘BACKGROUND Colorectal cancer(CRC)is a globally prevalent gastrointestinal malignant cancer,especially in elderly patients.Currently,surgery resection remains the primary treatment due to its favorable therapeutic outcomes.However,postoperative deterioration in nutritional status and quality of life(QoL)remains a concern.The geriatric nutritional risk index(GNRI),which is calculated based on serum albumin levels and the ratio of normal body weight to ideal body weight,is easily accessible and accurate,making it increasingly popular in clinical practice.AIM To investigate the impact of GNRI-guided tiered nutritional interventions on postoperative nutritional recovery and QoL in elderly CRC patients.METHODS A retrospective analysis was conducted on 135 elderly CRC patients undergoing radical resection at our hospital from September 2022 to December 2024.Participants were divided into two cohorts:The research group(n=61)received GNRI-based graded nutritional support,while the control group(n=65)received conventional nutritional intervention.Clinical indicators,such as postoperative passage of gas by anus,incidence/duration of postoperative fever,hospitalization length and costs,were compared between the two groups.Nutritional biomarkers,including hemoglobin,prealbumin,transferrin,and Patient-Generated Subjective Global Assessment scores were assessed on postoperative day 1 and post-intervention(day 1 after intervention).The Generic QoL Inventory-74 was employed to assess physical function,social function,material life,and psychological function in the two groups.Immunoglobulin(Ig)(IgG,IgA,IgM)and inflammatory markers[nuclear factor kappa B,interleukin(IL)-1,tumor necrosis factor-α,IL-8]were compared between groups.Complication rates were also monitored.RESULTS The research group showed significantly faster postoperative passage of gas by anus,fewer instances of fever,reduced fever duration,shorter hospitalization duration,and lower costs compared with the control group(P<0.05).Following intervention,the research group exhibited higher levels of hemoglobin,prealbumin,and transferrin,and lower Patient-Generated Subjective Global Assessment scores vs the control group(P<0.05).Scores for physical function,social function,material life,and psychological function showed substantial improvement(P<0.05).Levels of IgG,IgA,and IgM were significantly elevated in the research group(P<0.05),while nuclear factor kappa B,IL-1,tumor necrosis factor-α,and IL-8 levels were noticeably lowered vs the control group(P<0.05).The incidence of overall complications within the research group reached 24.59%,notably lower than that(43.08%)observed in the control group(P<0.05).CONCLUSION GNRI-based graded nutritional intervention in elderly CRC patients can significantly improve postoperative recovery,enhance their nutritional status and QoL,promote immune function recovery,attenuate inflammation,and lower the incidence of postoperative complications.This protocol represents a clinically viable strategy for optimizing postoperative care.
基金Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study
文摘In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.
基金financially supported by National Natural Science Foundation of China(No.52304136)Young Talent of Lifting Engineering for Science and Technology in Shandong,China(No.SDAST2024QTA060)Key Project of Research and Development in Liaocheng(No.2023YD02)。
文摘It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces.
基金support provided by National Natural Science Foundation of China(22471018,22071008,22208018)support provided by the Shenzhen Science and Technology Program(JCYJ20220818100012025).
文摘Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), merging the characteristics of polymers and ionic liquids, have emerged as viable options for the development of FGMs given their tunable skeleton, ionic conductivity, and compatibility with various functional materials. This review highlights the latest advancements in the design strategies of FGMs based on porous PILs, focusing on single and multi-gradient structures. Furthermore, we also highlight their emerging applications in molecular recognition, sensing, adsorption, separation, and catalysis. By exploring the interplay between porosity, ionic functionality, and gradient architecture, this review offers perspectives on the prospects of PIL-based FGMs for tackling global challenges in energy, environment, and healthcare.
文摘The utilization of graded Al powders offers the possibility to adjust the combustion performance of Al powders,while simultaneously safeguarding their energy properties.In this paper,a series of graded Al powder have been incorporated into the typical Al@AP composites through the spray drying technique.The thermal behavior,ignition and combustion characteristics were comprehensively evaluated and compared.The experimental results showed that with the varying inclusion of the graded Al,the heat of reaction exhibited a significant change,ranging from 9090 J·g^(-1) to 11036 J·g^(-1),which was strongly dependent on the particle size of Al.The combination of Al with diverse range of particle sizes in graded configuration serves to significantly enhance the decomposition of AP,resulting in the disappearance of the LTD stage and a conspicuous decrease of at least 11.7℃ in the peak temperature of the HTD.Furthermore,the maximum burning rate achieved by the Al-3@AP composite was 33.6 mm·s^(-1),which was exactly twice as high as that of the graded Al-1@AP composite with the lowest burning rate.Diffraction peaks corresponding to unburned Al were detected in the condensed combustion products of Al-1@AP,and the combustion images clearly indicated an incomplete combustion tendency for this sample.In contrast,a well-designed gradation of Al powders,such as a combination of fine Al powders with a particle size below 5μm,has proven to be the most conducive to enhancing the combustion efficiency of the composites.
基金Project supported by the National Natural Science Foundation of China(Nos.11872233,U2341231,and 12102245)。
文摘A novel elastic metamaterial is proposed with the aim of achieving lowfrequency broad bandgaps and bandgap regulation.The band structure of the proposed metamaterial is calculated based on the Floquet-Bloch theorem,and the boundary modes of each bandgap are analyzed to understand the effects of each component of the unit cell on the bandgap formation.It is found that the metamaterials with a low elastic modulus of ligaments can generate flexural wave bandgaps below 300 Hz.Multi-frequency vibrations can be suppressed through the selective manipulation of bandgaps.The dual-graded design of metamaterials that can significantly improve the bandgap width is proposed based on parametric studies.A new way that can regulate the bandgap is revealed by studying the graded elastic modulus in the substrate.The results demonstrate that the nonlinear gradient of the elastic modulus in the substrate offers better bandgap performance.Based on these analyses,the proposed elastic metamaterials can pave the way for multi-frequency vibration control,low-frequency bandgap broadening,and bandgap tuning.
文摘Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.
基金financially supported by the Scientific Research Project Coordinatorship (BAP) of Yildiz Technical University (YTU) (Project No: FYL-2021-3825)。
文摘Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by adding various reinforcements,however,this enhancement comes at the cost of reduced fracture toughness.This paradox of increased wear resistance versus decreased fracture toughness in aluminum alloys can be resolved by using functionally graded materials (FGMs).This study focuses on the abrasive wear behavior of functional graded aluminum matrix composites reinforced with Al_(3)Ti particles.The wear properties of the composites were investigated by considering the characteristics of the composite such as matrix type and various composite zones,as well as the wear parameters such as abrasive particle diameter,load,sliding speed and distance.Taguchi method was used in the abrasive wear tests in order to get more reliable results in a timeefficient manner.Experiment recipes were created based on the L_(27)(3^(6)) orthogonal series.As a result of the study,it is observed that the wear resistance of the composites increases with an increase in Al_(3)Ti reinforcement content and hardness of the matrix.In addition,the size of abrasive particles and the applied load are significant factors affecting abrasive wear.