To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the consi...To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the considerable squandering of resources. The coal pillar resource of the main roadway and its branch roadway constitutes a significant recovery subject. Its coal pillar shape is regular and possesses a considerable strike distance, facilitating the arrangement of the coal pillar recovery working face (CPRWF) for mining operations. However, for the remaining coal pillars with a thick and hard roof (THF) and multiple tectonic zones, CPRWF encounters challenges in selecting an appropriate layout, managing excessive roof pressure, and predicting mining stress. Aiming at the roadway coal pillar group with THF and multi-structural areas in specific projects, a method of constructing multi-stage CPRWF by one side gob-side entry driving (GSED) and one side roadway reusing is proposed. Through theoretical calculation of roof fracture and numerical simulation verification, combined with field engineering experience and economic analysis, the width of the narrow coal pillar (NCP) in the GSED is determined to be 10 m and the length of the CPRWF is 65 m. Concurrently, the potential safety hazard that the roof will fall asymmetrically and THF is difficult to break during CPRWF mining after GSED is analyzed and verified. Then, a control method involving the pre-cutting of the roof in the reused roadway before mining is proposed. This method has been shown to facilitate the complete collapse of THF, reduce the degree of mine pressure, and facilitate the symmetrical breaking of the roof. Accordingly, a roof-cutting scheme based on a directional drilling rig, bidirectional shaped polyvinyl chloride (PVC) pipe, and emulsion explosive was devised, and the pre-splitting of 8.2 m THF was accomplished. Field observations indicate that directional cracks are evident in the roof, the coal wall is flat during CPRWF mining, and the overall level of mining pressure is within the control range. Therefore, the combined application of GSED and roof-cutting technology for coal pillar recovery has been successfully implemented, thereby providing new insights and engineering references for the construction and pressure relief mining of CPRWF.展开更多
Gob-side entry retaining(GER)is widely applied in China.Nevertheless,the stability mechanism of the GER with coal pilla r-backfill body(CPBB)under dynamic overburden load remains unexplored.A voussoir beam structure(V...Gob-side entry retaining(GER)is widely applied in China.Nevertheless,the stability mechanism of the GER with coal pilla r-backfill body(CPBB)under dynamic overburden load remains unexplored.A voussoir beam structure(VBS)model is established to analyze roof structure stability during panel advancement,introducing a VBS stability criterion.Reducing block B length l and immediate roof damage variable D,and increasing coal pillar widthχ_(c).lowers the GER structure instability risk.Reducing l and the GER width w leads to a CPBB system stability upswing.A UDEC model was established to systematically reveal how the l,backfill body width x_(b),and strength affect the stability and coupling performance of the CPPB system by monitoring the crack damage D_(C).Simulation results indicate that at l=14 m,χ_(b)=2.0 m,watercement ratio 1.5:1,the coal pillar and backfill body have similar D_(C)but maintain stability,resulting in CPPB system coupling degree K,better.A novel GER method supported by the CPBB was implemented on-site.Monitoring results indicated that the coal pillar peak stresses were 19.17 MPa(ahead),16.14 MPa(behind),and the backfill body peak stress was 12.27 MPa(maximum).The floor heave was380 mm,with a 103 mm backfill body rib.展开更多
This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi...This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.展开更多
This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive appro...This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry.展开更多
In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking ...In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking was established by the Winkler foundation beam theory, and the stress evolution law of surrounding rock with different dip angles of the seam during the mining process was analyzed by using FLAC3 D. The results show that: with the dip angle changing from 45° to 0°, the solid-coal side of gobside entry begins to form an L-shaped stress concentration zone at a dip angle of 30°, and the stress concentration degree goes to higher and higher levels. However, the stress concentration degree of the coalpillar side goes to lower and lower levels; the influence range and peak stress of the abutment at the lateral strata of adjacent gob increase with dip angle decreasing and reach a maximum value at a dip angle of 0°, but the tailgate is not affected; the abutment pressure superposition of two adjacent gobs leads to stress concentration further enhancing in both sides of gob-side entry. With the influence of strong mining disturbance, rock burst is easily induced by dynamic and static combined load in the advanced segment of gob-side entry. To achieve stability control similar to that in the roadway, the key control strategy is to reinforce surrounding rock and unload both sides. Accordingly, the large-diameter drilling and high-pressure water injection combined unloading and reinforced support cooperative control technology was proposed and applied in field test. The results of Electromagnetic Emission(EME) and field observation showed that unloading and surrounding rock control effect was obvious.展开更多
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara...Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.展开更多
Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numeric...Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numerical simulation and the field trial.Research results present that bending and folding floor heave is the main factor in the stage of the first panel mining;squeezing and fluidity floor heave plays a great role in the stable stage of gob-side entry retaining;the combination of the former two factors affects mainly the stage of the second mining ahead;abutment pressure is a fundamental contribution to the serious floor heave of gob-side entry retaining,and sides corners of solid coal body are key part in the case of floor heave controlling of gob-side entry retaining.Floor heave of gob-side entry retaining can be significantly controlled by reinforcing sides and corners of solid coal body,and influence rules on the floor heave of gob side entry retaining of sides supporting strength and the bottom bolt orientation in solid coal side are obtained.Research results have been successfully applied in gob-side entry retaining of G20-F23070 face haulage roadway in #2 coal mine of Pingmei Group,and the field observation shows that the proposed technique is an effective way in controlling the floor heave of gob-side entry retaining.展开更多
Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side en...Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions.展开更多
Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution ...Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution both in the gob and abutment.Throughout numerical simulation investigations up to now,little attention has been paid to it or an AOB of 90°was used,which however,is not realistic.This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine.The AOB was obtained through cross-measure boreholes.Hoek-Brown constitutive model was used to simulate the rock masses.Double-yield constitutive model,which was best fitted by Salamon's model,was used to simulate the gob.The results show that a‘‘/\shape"shear failure zone develops around the gob.The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line,and the number of yielded zones within the gob floor close to the gob edge is smaller.According to the research,the entry was determined to be driven under the gob edge employing splitlevel longwall panel layout(SLPL).The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress,and the area of intact rock mass at the elevating section is larger than conventional layout.Numerical modelling was then validated by field observation.展开更多
A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining p...A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.展开更多
In multi-seam mining,the interlayer rock strata between the upper coal seam(UCS)and the lower coal seam(LCS)appear damage and strength weakening after mining the UCS.Ground stability control of the gob-side entry reta...In multi-seam mining,the interlayer rock strata between the upper coal seam(UCS)and the lower coal seam(LCS)appear damage and strength weakening after mining the UCS.Ground stability control of the gob-side entry retaining(GER)under the gob with close distance coal seams(CDCS)is faced with difficulties due to little attention to GER under this condition.This paper focuses on surrounding rock stability control and technical parameters design for GER under the gob with CDCS.The floor rock strata damage characteristics after mining the UCS is first evaluated and the damage factor of the interlayer rock strata below the UCS is also determined.Then,a structural mechanics model of GER surrounding rock is set up to obtain the main design parameters of the side-roadway backfill body(SBB)including the maximum and minimum SBB width calculation formula.The optimal SBB width and the water-to-cement ratio of high water quick-setting material(HWQM)to construct the SBB are determined as 1.2 m and 1.5:1.0,respectively.Finally,engineering trial tests of GER are successfully carried out at#5210 track transportation roadway of Xingwu Colliery.Research results can guide GER design under similar mining and geological conditions.展开更多
To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained road...To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained roadway, based on the elastic thin plate theory of the stope roof. The stress state and mechanical response of the filling body along the remained roadway were studied. Specifically, firstly, the supporting pressure of the coal pillar which is on one side of the gob-side remained roadway was deduced.Also, an equation that is used to calculate the width of the balance area in the stress limit state was acquired. Then, an equation that is used to calculate the roof cutting force on one side of the supporting body was obtained. By using FLAC3D, the authors investigated the displacement field and stress field response laws of rock masses around the roadway with different filling body's widths. The results show that with the filling body's width increasing, the supporting ability of the filling body increases.Meanwhile, the rock mass displacement around the roadway and the filling body deformation decrease.The better the filling body's supporting effect is, the higher the roof cutting force will be. When the filling body's width is larger than 3.0 m, its internal bearing ability becomes stable and the filling body's deformation became non-apparent. Finally, analysis shows that the filling body's width should be 2.5 m.Furthermore, the authors conducted field tests in the supply roadway 1204, using high-water materials and acquired expected outcomes.展开更多
In order to optimize gob-side entry in fully-mechanized working face in moderate-thick-coal seams, we adopt a new attempt to pack roadside by pumping ordinary concrete, which is very important for the development of g...In order to optimize gob-side entry in fully-mechanized working face in moderate-thick-coal seams, we adopt a new attempt to pack roadside by pumping ordinary concrete, which is very important for the development of gob-side entry technology. The concrete has a long initial setting time and a low initial strength. So it is difficult to control the surrounding rock. In this paper, we analyze the effect of using roadside cable to reinforce supporting in gob-side entry surrounding rock controlling based on elas-tic-plastic and material mechanics knowledge. And then we propose a scheme that cable is used to reinforce roadside supporting and a single hydraulic prop is used as the temporary supporting in gob side. Using the numerical simulation software FLAC2D, we numerically simulated supporting scheme. Results of both the 2D modeling and the industrial test on No.3117 face in Jingang Mine prove that the scheme is feasible. The results show that the technology of protecting the roadway in gob-entry retained efficiently make up the deficiency of roadside packing with ordinary concrete, effectively control the roof strata and acquire a good result of retaining roadway.展开更多
This study investigates the stability problem of gob-side entry retaining (GER) and backfilling wall which located under the key block B. Based on the combined research of elastic-plastic mechanics, structure mechan...This study investigates the stability problem of gob-side entry retaining (GER) and backfilling wall which located under the key block B. Based on the combined research of elastic-plastic mechanics, structure mechanics and modern theory of mining-induced pressure, the caving characteristic and roof structure over the GER were analyzed, and the vertical force and the torque on retained entry roof were also derived as the position for the retained entry varies. On the basis of the specific geology in Huainan mining area, the results indicate that a relatively more stable position for retained entry neighbors the hinge point of block A and B, and it also located at a scope ranging from this point to the one-third length of block B in horizontal direction. As to appropriate position for backfilling wall, this study recommends partial- road-in backfilling method for GER. Field trial conducted at panel face 12418 of Xieqiao Mine demonstrates that the recommended width for original entry is 3.6 m and the preferred width proportion between original retained entry and original entry is 75 % or so whereas the avoidable one is 88 % or so. These findings provide qualitative references to the mines which share similar geology as what Huainan mining area characterized.展开更多
In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulatio...In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulation and field measurement were synthetically used to analyze the deformation and failure characteristics of surrounding rock. Besides, applicability analysis, prestress field distribution characteristics of surrounding rock and the control effect on large deformation of surrounding rock were also further studied for the gob-side entry driving in deep mine using the cable-truss supporting system. The results show that, first, compared with no support and traditional bolt anchor support, roof cable-truss system can effectively restrain the initiation and propagation of tensile cracks in the roof surrounding rock and arc shear cracks in the two sides, moreover, the broken development of surrounding rock, roof separation and extrusion deformation between the two sides of the roadway are all controlled; second, a prestressed belt of trapezoidal shape is generated in the surrounding rock by the cable-truss supporting system, and the prestress field range is wide. Especially, the prestress concentration belt in the shallow surrounding rock can greatly improve the anchoring strength and deformation resisting capability of the rock stratum;third, an optimized support system of ‘‘roof and side anchor net beam, roof cable-truss supporting system and anchor cable of the narrow coal pillar" was put forward, and the support optimization design and field industrial test were conducted for the gob-side entry driving of the working face 5302 in Tangkou Mine, from which a good supporting effect was obtained.展开更多
In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2...In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2107 face in Chengjiao Colliery is researched as an engineering case. Through physical mechanical test of rock, theoretical and numerical simulation analyses of rock, the analysis model of the roadway overlying strata structure was established, and its parameters quantified. To reveal the deformation law of the surrounding rock, the stability of the overlying strata structure was studied before, during and after the roadway driving. According to the field conditions, the stress distribution in coal pillar was quantified, and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving. Finally, the pillar width of 4 m was considered as the most reasonable. The research results show that there is great difference in support conditions among roadway roof, entity coal side and narrow pillar side. Besides, the asymmetric control technique for support of the surrounding rock was proposed. The asymmetric control technique was proved to be reasonable by field monitoring, support by bolt-net, steel ladder and steel wire truss used in narrow pillar side.展开更多
Pointed out some technical difficulties of gob-side entry retaining with roadside packing in longwall top-coal caving technology (LTCT), and analyzed the function mecha-nism of roadside filling body. Theory analysis s...Pointed out some technical difficulties of gob-side entry retaining with roadside packing in longwall top-coal caving technology (LTCT), and analyzed the function mecha-nism of roadside filling body. Theory analysis shows the mechanical properties of high water material fit for the feature of deformation of gob-side entry retaining in LTCT, and gob-side entry retaining in LTCT face is one of effective ways to increase the recovery ra-tio of mining district.展开更多
Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to...Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar.展开更多
The stability control of gob-side entry retaining in fully mechanized caving face is a typical challenge in many coal mines in China.The rotation and subsidence of the lateral cantilever play a critical role in a coal...The stability control of gob-side entry retaining in fully mechanized caving face is a typical challenge in many coal mines in China.The rotation and subsidence of the lateral cantilever play a critical role in a coal mine,possibly leading to instability in a coal seam wall or a gob-side wall due to its excessive rotation subsidence.Hence,the presplitting blasting measures in the roof was implemented to cut down the lower main roof and convert it to caved immediate roof strata,which can significantly reduce the rotation space for the lateral cantilever and effectively control its rotation.Firstly,the compatible deformation model was established to investigate the quantitative relationship between the deformation of the coal seam wall and the gob-side wall and the subsidence of the lateral cantilever.Then,the instability judgments for the coal seam wall and gob-side wall were revealed,and the determination method for the optimal roof cutting height were obtained.Furthermore,The Universal Distinct Element Code numerical simulation was adopted to investigate the effect of roof-cutting height on the stability of the retained entry.The numerical simulation results indicated that the deformation of the roadway could be effectively controlled when the roofcutting height reached to 18 m,which verified the theoretical deduction well.Finally,a field application was performed at the No.3307 haulage gateway in the Tangan coal mine,Ltd.,Shanxi Province,China.The field monitoring results showed that the blasting roof cutting method could effectively control the large deformation of surrounding rocks,which provided helpful references for coal mine safety production under similar conditions.展开更多
Aiming to effectively solve the problem of deep mining with safety and high efficiency, according to geological conditions, production and stress analysis in roadway surrounding rock, experimental studies on roadway s...Aiming to effectively solve the problem of deep mining with safety and high efficiency, according to geological conditions, production and stress analysis in roadway surrounding rock, experimental studies on roadway supporting of workface 103 under three types of roof conditions with different supporting technologies and parameters were carried out based on the theory of supporting technology of gob-side entry. The results show the supporting of gob-side entry retaining is successful, and the deep surrounding rock is effectively controlled by field monitoring and drilling-hole photos. After stress in surrounding rock of roadways restores stable, the final roadway deformation of surrounding rock of haulage roadway and air-roadway are both about 300 mm; width of gob-side entry is 3.8-4.0 m and average height is 2.0-2.2 m; roadway section is above 8.0 m^2, which solves the problems of gob-side entry retaining support strength and safe mining; necessary conditions of mining safety in workface 103 are met.展开更多
基金Project(52204164) supported by the National Natural Science Foundation of ChinaProject(2023ZKPYSB01) supported by the Fundamental Research Funds for the Central Universities,China。
文摘To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the considerable squandering of resources. The coal pillar resource of the main roadway and its branch roadway constitutes a significant recovery subject. Its coal pillar shape is regular and possesses a considerable strike distance, facilitating the arrangement of the coal pillar recovery working face (CPRWF) for mining operations. However, for the remaining coal pillars with a thick and hard roof (THF) and multiple tectonic zones, CPRWF encounters challenges in selecting an appropriate layout, managing excessive roof pressure, and predicting mining stress. Aiming at the roadway coal pillar group with THF and multi-structural areas in specific projects, a method of constructing multi-stage CPRWF by one side gob-side entry driving (GSED) and one side roadway reusing is proposed. Through theoretical calculation of roof fracture and numerical simulation verification, combined with field engineering experience and economic analysis, the width of the narrow coal pillar (NCP) in the GSED is determined to be 10 m and the length of the CPRWF is 65 m. Concurrently, the potential safety hazard that the roof will fall asymmetrically and THF is difficult to break during CPRWF mining after GSED is analyzed and verified. Then, a control method involving the pre-cutting of the roof in the reused roadway before mining is proposed. This method has been shown to facilitate the complete collapse of THF, reduce the degree of mine pressure, and facilitate the symmetrical breaking of the roof. Accordingly, a roof-cutting scheme based on a directional drilling rig, bidirectional shaped polyvinyl chloride (PVC) pipe, and emulsion explosive was devised, and the pre-splitting of 8.2 m THF was accomplished. Field observations indicate that directional cracks are evident in the roof, the coal wall is flat during CPRWF mining, and the overall level of mining pressure is within the control range. Therefore, the combined application of GSED and roof-cutting technology for coal pillar recovery has been successfully implemented, thereby providing new insights and engineering references for the construction and pressure relief mining of CPRWF.
基金financial support provided by the National Natural Science Foundation of China(Nos.52574126and 52574144)the Xinjiang Uygur Autonomous Region Key R&D Project Task Special-Department and Department Linkage Project(No.2022B01051)+4 种基金the Major Project of Regional Joint Foundation of China(No.U21A20107)the Xinjiang Uygur Autonomous Region Tianchi Introduction Plan(No.2024XGYTCYC03)the Scientific Research Fund of Hunan Provincial Education Department(No.24A0359)the Urumqi City Hongshan Sci-Tech Innvoation Elite Talents Youth Top Talents Program(No.B241013004)the National Key Research and Development Program Young Scientists Project(No.2024YFC2910600)。
文摘Gob-side entry retaining(GER)is widely applied in China.Nevertheless,the stability mechanism of the GER with coal pilla r-backfill body(CPBB)under dynamic overburden load remains unexplored.A voussoir beam structure(VBS)model is established to analyze roof structure stability during panel advancement,introducing a VBS stability criterion.Reducing block B length l and immediate roof damage variable D,and increasing coal pillar widthχ_(c).lowers the GER structure instability risk.Reducing l and the GER width w leads to a CPBB system stability upswing.A UDEC model was established to systematically reveal how the l,backfill body width x_(b),and strength affect the stability and coupling performance of the CPPB system by monitoring the crack damage D_(C).Simulation results indicate that at l=14 m,χ_(b)=2.0 m,watercement ratio 1.5:1,the coal pillar and backfill body have similar D_(C)but maintain stability,resulting in CPPB system coupling degree K,better.A novel GER method supported by the CPBB was implemented on-site.Monitoring results indicated that the coal pillar peak stresses were 19.17 MPa(ahead),16.14 MPa(behind),and the backfill body peak stress was 12.27 MPa(maximum).The floor heave was380 mm,with a 103 mm backfill body rib.
基金Project(WPUKFJJ2019-19)supported by the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining,ChinaProject(51974317)supported by the National Natural Science Foundation of China。
文摘This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.
基金Project(52104139)supported by the National Natural Science Foundation of China Youth Science FoundationProject(SKLGDUEK2132)supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology/China University of Mining and Technology-BeijingProjects([2020]2Y030,[2020]2Y019,[2020j3007,[2020]3008,and[2022j0il]supported by the Guizhou Province Science and Technology Planning,China Project(2022B01051)supported by the Key Research and Development Special Tasks of Xinjiang,China。
文摘This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry.
基金supported by the Key Project of National Natural Science Foundation of China (No.51634001)the National Natural Science Foundation of China (No.51404269 and 51674253)+1 种基金the State Key Research Development Program of China (No.2016YFC0801403)the Key Research Development Program of Jiangsu Province,China (No.BE2015040)
文摘In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking was established by the Winkler foundation beam theory, and the stress evolution law of surrounding rock with different dip angles of the seam during the mining process was analyzed by using FLAC3 D. The results show that: with the dip angle changing from 45° to 0°, the solid-coal side of gobside entry begins to form an L-shaped stress concentration zone at a dip angle of 30°, and the stress concentration degree goes to higher and higher levels. However, the stress concentration degree of the coalpillar side goes to lower and lower levels; the influence range and peak stress of the abutment at the lateral strata of adjacent gob increase with dip angle decreasing and reach a maximum value at a dip angle of 0°, but the tailgate is not affected; the abutment pressure superposition of two adjacent gobs leads to stress concentration further enhancing in both sides of gob-side entry. With the influence of strong mining disturbance, rock burst is easily induced by dynamic and static combined load in the advanced segment of gob-side entry. To achieve stability control similar to that in the roadway, the key control strategy is to reinforce surrounding rock and unload both sides. Accordingly, the large-diameter drilling and high-pressure water injection combined unloading and reinforced support cooperative control technology was proposed and applied in field test. The results of Electromagnetic Emission(EME) and field observation showed that unloading and surrounding rock control effect was obvious.
基金Financial support for this work was provided by the National Natural Science Foundation of China(Nos.51474005,51004002)
文摘Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.
基金provided by the National Natural Science Foundation of China(No.51174195)the State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology(No.SKLCRSM08X04)+1 种基金a foundation for the author of the National Excellent Doctoral Dissertation of China(No.200760)the Science Research Fund of China University of Mining and Technology(No.2008A002)
文摘Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numerical simulation and the field trial.Research results present that bending and folding floor heave is the main factor in the stage of the first panel mining;squeezing and fluidity floor heave plays a great role in the stable stage of gob-side entry retaining;the combination of the former two factors affects mainly the stage of the second mining ahead;abutment pressure is a fundamental contribution to the serious floor heave of gob-side entry retaining,and sides corners of solid coal body are key part in the case of floor heave controlling of gob-side entry retaining.Floor heave of gob-side entry retaining can be significantly controlled by reinforcing sides and corners of solid coal body,and influence rules on the floor heave of gob side entry retaining of sides supporting strength and the bottom bolt orientation in solid coal side are obtained.Research results have been successfully applied in gob-side entry retaining of G20-F23070 face haulage roadway in #2 coal mine of Pingmei Group,and the field observation shows that the proposed technique is an effective way in controlling the floor heave of gob-side entry retaining.
基金Project(51404251)supported by the National Natural Science Foundation of ChinaProject(BK20140198)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(PPZY2015A046)supported by the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions.
基金This work was supported by the National Natural Science Foundation of China,Young Scientists Fund(No.51804209)NSFC-Shanxi Joint Fund for Coal-Based Low-Carbon Technology(No.U1710258)Shanxi Applied Basic Research Programs,Science and Technology Foundation for Youths(No.201801D221363).THX.
文摘Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution both in the gob and abutment.Throughout numerical simulation investigations up to now,little attention has been paid to it or an AOB of 90°was used,which however,is not realistic.This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine.The AOB was obtained through cross-measure boreholes.Hoek-Brown constitutive model was used to simulate the rock masses.Double-yield constitutive model,which was best fitted by Salamon's model,was used to simulate the gob.The results show that a‘‘/\shape"shear failure zone develops around the gob.The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line,and the number of yielded zones within the gob floor close to the gob edge is smaller.According to the research,the entry was determined to be driven under the gob edge employing splitlevel longwall panel layout(SLPL).The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress,and the area of intact rock mass at the elevating section is larger than conventional layout.Numerical modelling was then validated by field observation.
基金supported by the National Natural Science Foundation of China (No. 51174197)the Major State Basic Research Development Program of China (No. 2014CB046905)+1 种基金State Key Laboratory for Geo Mechanics and Deep Underground Engineering (CUMT) (No. SKLGDUEK1503)the ‘Qing Lan’ Project of Jiangsu Province
文摘A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.
基金financial support from the National Natural Science Foundation of China(Nos.51804111,51974117,51904102,and 52074117)Natural Science Foundation of Hunan Province(No.2020JJ5194)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20200991)。
文摘In multi-seam mining,the interlayer rock strata between the upper coal seam(UCS)and the lower coal seam(LCS)appear damage and strength weakening after mining the UCS.Ground stability control of the gob-side entry retaining(GER)under the gob with close distance coal seams(CDCS)is faced with difficulties due to little attention to GER under this condition.This paper focuses on surrounding rock stability control and technical parameters design for GER under the gob with CDCS.The floor rock strata damage characteristics after mining the UCS is first evaluated and the damage factor of the interlayer rock strata below the UCS is also determined.Then,a structural mechanics model of GER surrounding rock is set up to obtain the main design parameters of the side-roadway backfill body(SBB)including the maximum and minimum SBB width calculation formula.The optimal SBB width and the water-to-cement ratio of high water quick-setting material(HWQM)to construct the SBB are determined as 1.2 m and 1.5:1.0,respectively.Finally,engineering trial tests of GER are successfully carried out at#5210 track transportation roadway of Xingwu Colliery.Research results can guide GER design under similar mining and geological conditions.
基金supported by the Sub-Project of National Key Basic Research and Development Program (No. 2015CB251600)funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2014XT01)the National Natural Science Foundation of China (No. 51574227)
文摘To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained roadway, based on the elastic thin plate theory of the stope roof. The stress state and mechanical response of the filling body along the remained roadway were studied. Specifically, firstly, the supporting pressure of the coal pillar which is on one side of the gob-side remained roadway was deduced.Also, an equation that is used to calculate the width of the balance area in the stress limit state was acquired. Then, an equation that is used to calculate the roof cutting force on one side of the supporting body was obtained. By using FLAC3D, the authors investigated the displacement field and stress field response laws of rock masses around the roadway with different filling body's widths. The results show that with the filling body's width increasing, the supporting ability of the filling body increases.Meanwhile, the rock mass displacement around the roadway and the filling body deformation decrease.The better the filling body's supporting effect is, the higher the roof cutting force will be. When the filling body's width is larger than 3.0 m, its internal bearing ability becomes stable and the filling body's deformation became non-apparent. Finally, analysis shows that the filling body's width should be 2.5 m.Furthermore, the authors conducted field tests in the supply roadway 1204, using high-water materials and acquired expected outcomes.
基金support from the National Nature Science Foundation of China (No50874124)
文摘In order to optimize gob-side entry in fully-mechanized working face in moderate-thick-coal seams, we adopt a new attempt to pack roadside by pumping ordinary concrete, which is very important for the development of gob-side entry technology. The concrete has a long initial setting time and a low initial strength. So it is difficult to control the surrounding rock. In this paper, we analyze the effect of using roadside cable to reinforce supporting in gob-side entry surrounding rock controlling based on elas-tic-plastic and material mechanics knowledge. And then we propose a scheme that cable is used to reinforce roadside supporting and a single hydraulic prop is used as the temporary supporting in gob side. Using the numerical simulation software FLAC2D, we numerically simulated supporting scheme. Results of both the 2D modeling and the industrial test on No.3117 face in Jingang Mine prove that the scheme is feasible. The results show that the technology of protecting the roadway in gob-entry retained efficiently make up the deficiency of roadside packing with ordinary concrete, effectively control the roof strata and acquire a good result of retaining roadway.
文摘This study investigates the stability problem of gob-side entry retaining (GER) and backfilling wall which located under the key block B. Based on the combined research of elastic-plastic mechanics, structure mechanics and modern theory of mining-induced pressure, the caving characteristic and roof structure over the GER were analyzed, and the vertical force and the torque on retained entry roof were also derived as the position for the retained entry varies. On the basis of the specific geology in Huainan mining area, the results indicate that a relatively more stable position for retained entry neighbors the hinge point of block A and B, and it also located at a scope ranging from this point to the one-third length of block B in horizontal direction. As to appropriate position for backfilling wall, this study recommends partial- road-in backfilling method for GER. Field trial conducted at panel face 12418 of Xieqiao Mine demonstrates that the recommended width for original entry is 3.6 m and the preferred width proportion between original retained entry and original entry is 75 % or so whereas the avoidable one is 88 % or so. These findings provide qualitative references to the mines which share similar geology as what Huainan mining area characterized.
基金provided by the National Basic Research 973 Program of China (No. 2013CB036003)the National Natural Science Foundation of China (No. 51374198)the Annual College Graduate Research and Innovation Projects of Jiangsu Province of China (No. KYLX15_1402)
文摘In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulation and field measurement were synthetically used to analyze the deformation and failure characteristics of surrounding rock. Besides, applicability analysis, prestress field distribution characteristics of surrounding rock and the control effect on large deformation of surrounding rock were also further studied for the gob-side entry driving in deep mine using the cable-truss supporting system. The results show that, first, compared with no support and traditional bolt anchor support, roof cable-truss system can effectively restrain the initiation and propagation of tensile cracks in the roof surrounding rock and arc shear cracks in the two sides, moreover, the broken development of surrounding rock, roof separation and extrusion deformation between the two sides of the roadway are all controlled; second, a prestressed belt of trapezoidal shape is generated in the surrounding rock by the cable-truss supporting system, and the prestress field range is wide. Especially, the prestress concentration belt in the shallow surrounding rock can greatly improve the anchoring strength and deformation resisting capability of the rock stratum;third, an optimized support system of ‘‘roof and side anchor net beam, roof cable-truss supporting system and anchor cable of the narrow coal pillar" was put forward, and the support optimization design and field industrial test were conducted for the gob-side entry driving of the working face 5302 in Tangkou Mine, from which a good supporting effect was obtained.
文摘In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2107 face in Chengjiao Colliery is researched as an engineering case. Through physical mechanical test of rock, theoretical and numerical simulation analyses of rock, the analysis model of the roadway overlying strata structure was established, and its parameters quantified. To reveal the deformation law of the surrounding rock, the stability of the overlying strata structure was studied before, during and after the roadway driving. According to the field conditions, the stress distribution in coal pillar was quantified, and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving. Finally, the pillar width of 4 m was considered as the most reasonable. The research results show that there is great difference in support conditions among roadway roof, entity coal side and narrow pillar side. Besides, the asymmetric control technique for support of the surrounding rock was proposed. The asymmetric control technique was proved to be reasonable by field monitoring, support by bolt-net, steel ladder and steel wire truss used in narrow pillar side.
文摘Pointed out some technical difficulties of gob-side entry retaining with roadside packing in longwall top-coal caving technology (LTCT), and analyzed the function mecha-nism of roadside filling body. Theory analysis shows the mechanical properties of high water material fit for the feature of deformation of gob-side entry retaining in LTCT, and gob-side entry retaining in LTCT face is one of effective ways to increase the recovery ra-tio of mining district.
基金supports from the National High Technology Research and Development Program of China (No. 2012AA062101)the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-10-0770)+1 种基金the Program Granted for Scientific Innovation Research of College Graduate in Jiangsu Province (No. CXZZ11-0309)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)
文摘Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar.
基金supported by National Natural Science Foundation of China(Nos.51734009,51904290)the Natural Science Foundation of Jiangsu Province,China(BK20180663).
文摘The stability control of gob-side entry retaining in fully mechanized caving face is a typical challenge in many coal mines in China.The rotation and subsidence of the lateral cantilever play a critical role in a coal mine,possibly leading to instability in a coal seam wall or a gob-side wall due to its excessive rotation subsidence.Hence,the presplitting blasting measures in the roof was implemented to cut down the lower main roof and convert it to caved immediate roof strata,which can significantly reduce the rotation space for the lateral cantilever and effectively control its rotation.Firstly,the compatible deformation model was established to investigate the quantitative relationship between the deformation of the coal seam wall and the gob-side wall and the subsidence of the lateral cantilever.Then,the instability judgments for the coal seam wall and gob-side wall were revealed,and the determination method for the optimal roof cutting height were obtained.Furthermore,The Universal Distinct Element Code numerical simulation was adopted to investigate the effect of roof-cutting height on the stability of the retained entry.The numerical simulation results indicated that the deformation of the roadway could be effectively controlled when the roofcutting height reached to 18 m,which verified the theoretical deduction well.Finally,a field application was performed at the No.3307 haulage gateway in the Tangan coal mine,Ltd.,Shanxi Province,China.The field monitoring results showed that the blasting roof cutting method could effectively control the large deformation of surrounding rocks,which provided helpful references for coal mine safety production under similar conditions.
文摘Aiming to effectively solve the problem of deep mining with safety and high efficiency, according to geological conditions, production and stress analysis in roadway surrounding rock, experimental studies on roadway supporting of workface 103 under three types of roof conditions with different supporting technologies and parameters were carried out based on the theory of supporting technology of gob-side entry. The results show the supporting of gob-side entry retaining is successful, and the deep surrounding rock is effectively controlled by field monitoring and drilling-hole photos. After stress in surrounding rock of roadways restores stable, the final roadway deformation of surrounding rock of haulage roadway and air-roadway are both about 300 mm; width of gob-side entry is 3.8-4.0 m and average height is 2.0-2.2 m; roadway section is above 8.0 m^2, which solves the problems of gob-side entry retaining support strength and safe mining; necessary conditions of mining safety in workface 103 are met.