老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数...老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。展开更多
针对当光伏板处于不均匀的太阳光照射时,产生发电效率低的问题,提出一种混沌哈里斯鹰算法与电导增量法结合的算法。哈里斯鹰算法引入Levy飞行函数和Henon混沌映射,在跟踪早期,扩大算法的搜索范围。再引入最优个体策略,可进一步减少算法...针对当光伏板处于不均匀的太阳光照射时,产生发电效率低的问题,提出一种混沌哈里斯鹰算法与电导增量法结合的算法。哈里斯鹰算法引入Levy飞行函数和Henon混沌映射,在跟踪早期,扩大算法的搜索范围。再引入最优个体策略,可进一步减少算法的迭代次数。该算法使系统更易跳出局部最大功率点,而在跟踪后期,算法精确运行在小范围内,提高了局部搜索能力。实验结果表明,电导增量法的加入缓解了系统位于全局最大功率点(GMPP:Global Maximum Power Point)附近时的功率振荡,稳定输出。展开更多
Due to the enormous utilization of solar energy,the photovoltaic(PV)system is used.The PV system is functioned based on a maximum power point(MPP).Due to the climatic change,the Partial shading conditions have occurre...Due to the enormous utilization of solar energy,the photovoltaic(PV)system is used.The PV system is functioned based on a maximum power point(MPP).Due to the climatic change,the Partial shading conditions have occurred under non-uniform irradiance conditions.In the PV system,the global maximum power point(GMPP)is complex to track in the P-V curve due to the Partial shad-ing.Therefore,several tracking processes are performed using various methods like perturb and observe(P&O),hill climbing(HC),incremental conductance(INC),Fuzzy Logic,Whale Optimization Algorithm(WOA),Grey Wolf Optimi-zation(GWO)and Flying Squirrel Search Optimization(FSSO)etc.Though,the MPPT is not so efficient when the partial shading is increased.To increase the efficiency and convergences in MMPT,the Honey Badger optimization(HBO)algorithm is presented.This HBO model is motivated by the excellent foraging behaviour of honey badgers.This HBO model is used to achieve the best solution in GMPP tracking and speed convergence.The HBO methodology is also com-pared with prior P&O,WOA and FSSO methods using MATLAB.Therefore,the experiment shows that the HBO method is performed a higher tracking than all prior methods.展开更多
分析复杂光照条件下旁路二极管的接入对串联光伏阵列输出特性的影响,根据单个光伏模块的数学模型,导出复杂光照条件下串联光伏阵列的数学模型;通过对各种光照条件下串联光伏阵列输出特性的分析研究,总结U-I曲线中呈现恒流源特性的电压...分析复杂光照条件下旁路二极管的接入对串联光伏阵列输出特性的影响,根据单个光伏模块的数学模型,导出复杂光照条件下串联光伏阵列的数学模型;通过对各种光照条件下串联光伏阵列输出特性的分析研究,总结U-I曲线中呈现恒流源特性的电压区间与不同光照之间存在的关系,提出一种在复杂光照条件下快速追踪串联光伏阵列最大功率点(maximum power point,MPP)的算法,算法能够在复杂光照导致的多个MPP中确定全局最大功率点(global maximum power point,GMPP)。仿真表明,提出的算法能够识别阵列是否处于复杂光照情况下并快速追踪到GMPP。展开更多
The output power generation of a photovoltaic(PV)array reduces under partial shading,resulting in multiple local maxima in the PV characteristics and inaccurate tracking of the global maximum power point(GMPP).Various...The output power generation of a photovoltaic(PV)array reduces under partial shading,resulting in multiple local maxima in the PV characteristics and inaccurate tracking of the global maximum power point(GMPP).Various interconnection schemes are available to reduce power losses under partial shading.In this study,a primary key algorithm is proposed for distributing shading across an array.This method is suitable for any n×n PV array configuration and involves fewer calculations and variables,leading to reduced computational complexity.The power generations of a 9×9 PV array under four different shading conditions were compared with the configurations of:total cross-tied(TCT)and Su Du Ku,physical relocation and fixed column position of modules with fixed electrical connection(PRFCPM-FEC),and magic square(MS)and improved-odd-even-prime(IOEP).The advantage of the proposed method is that once the primary key elements are obtained,the remaining array elements are numbered in a simpler manner.The results obtained using the proposed arrangement show that the power is enhanced with reference to the TCT and is comparable to the Su Do Ku,PRFCPM-FEC,MS,and IOEP reconfigurations.展开更多
Renewable energy-based solar photovoltaic(PV)generation is the best alternative for conventional energy sources because of its natural abundance and environment friendly characteristics.Maximum power extraction from t...Renewable energy-based solar photovoltaic(PV)generation is the best alternative for conventional energy sources because of its natural abundance and environment friendly characteristics.Maximum power extraction from the PV system plays a critical role in increasing the efficiency of the solar power generation during partial shading conditions(PSCs).Therefore,a suitable maximum power point tracking(MPPT)technique to track the maximum power point(MPP)is of high need,even under PSCs.This paper presents an organized and concise review of MPPT techniques implemented for the PV systems in literature along with recent publications on various hardware design methodologies.Their classification is done into four categories,i.e.classical,intelligent,optimal,and hybrid depending on the tracking algorithm utilized to track MPP under PSCs.During uniform insolation,classical methods are highly preferred as there is only one peak in the P-V curve.However,under PSCs,the F-V curve exhibits multiple peaks,one global maximum power point(GMPP)and remaining are local maximum power points(LMPP’s).Under the PSCs,classical methods fail to operate at GMPP and hence there is a need for more advanced MPPT techniques.Every MPPT technique has its advantages and limits,but a streamlined MPPT is drafted in numerous parameters like sensors required,hardware implementation,cost viability,tracking speed and tracking efficiency.This study provides the advancement in this area since some parameter comparison is made at the end of every classification,which might be a prominent base-rule for picking the most gainful sort of MPPT for further research.展开更多
文摘老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。
文摘针对当光伏板处于不均匀的太阳光照射时,产生发电效率低的问题,提出一种混沌哈里斯鹰算法与电导增量法结合的算法。哈里斯鹰算法引入Levy飞行函数和Henon混沌映射,在跟踪早期,扩大算法的搜索范围。再引入最优个体策略,可进一步减少算法的迭代次数。该算法使系统更易跳出局部最大功率点,而在跟踪后期,算法精确运行在小范围内,提高了局部搜索能力。实验结果表明,电导增量法的加入缓解了系统位于全局最大功率点(GMPP:Global Maximum Power Point)附近时的功率振荡,稳定输出。
文摘Due to the enormous utilization of solar energy,the photovoltaic(PV)system is used.The PV system is functioned based on a maximum power point(MPP).Due to the climatic change,the Partial shading conditions have occurred under non-uniform irradiance conditions.In the PV system,the global maximum power point(GMPP)is complex to track in the P-V curve due to the Partial shad-ing.Therefore,several tracking processes are performed using various methods like perturb and observe(P&O),hill climbing(HC),incremental conductance(INC),Fuzzy Logic,Whale Optimization Algorithm(WOA),Grey Wolf Optimi-zation(GWO)and Flying Squirrel Search Optimization(FSSO)etc.Though,the MPPT is not so efficient when the partial shading is increased.To increase the efficiency and convergences in MMPT,the Honey Badger optimization(HBO)algorithm is presented.This HBO model is motivated by the excellent foraging behaviour of honey badgers.This HBO model is used to achieve the best solution in GMPP tracking and speed convergence.The HBO methodology is also com-pared with prior P&O,WOA and FSSO methods using MATLAB.Therefore,the experiment shows that the HBO method is performed a higher tracking than all prior methods.
文摘分析复杂光照条件下旁路二极管的接入对串联光伏阵列输出特性的影响,根据单个光伏模块的数学模型,导出复杂光照条件下串联光伏阵列的数学模型;通过对各种光照条件下串联光伏阵列输出特性的分析研究,总结U-I曲线中呈现恒流源特性的电压区间与不同光照之间存在的关系,提出一种在复杂光照条件下快速追踪串联光伏阵列最大功率点(maximum power point,MPP)的算法,算法能够在复杂光照导致的多个MPP中确定全局最大功率点(global maximum power point,GMPP)。仿真表明,提出的算法能够识别阵列是否处于复杂光照情况下并快速追踪到GMPP。
基金Supported by Administration of National Institute of Technology Karnataka,India and Prince Sultan University,Saudi Arabia.
文摘The output power generation of a photovoltaic(PV)array reduces under partial shading,resulting in multiple local maxima in the PV characteristics and inaccurate tracking of the global maximum power point(GMPP).Various interconnection schemes are available to reduce power losses under partial shading.In this study,a primary key algorithm is proposed for distributing shading across an array.This method is suitable for any n×n PV array configuration and involves fewer calculations and variables,leading to reduced computational complexity.The power generations of a 9×9 PV array under four different shading conditions were compared with the configurations of:total cross-tied(TCT)and Su Du Ku,physical relocation and fixed column position of modules with fixed electrical connection(PRFCPM-FEC),and magic square(MS)and improved-odd-even-prime(IOEP).The advantage of the proposed method is that once the primary key elements are obtained,the remaining array elements are numbered in a simpler manner.The results obtained using the proposed arrangement show that the power is enhanced with reference to the TCT and is comparable to the Su Do Ku,PRFCPM-FEC,MS,and IOEP reconfigurations.
基金the Science and Engineering Research Board(SERB),Department of Science&Technology,Government of India under the Grant No.ECR/2017/000316.
文摘Renewable energy-based solar photovoltaic(PV)generation is the best alternative for conventional energy sources because of its natural abundance and environment friendly characteristics.Maximum power extraction from the PV system plays a critical role in increasing the efficiency of the solar power generation during partial shading conditions(PSCs).Therefore,a suitable maximum power point tracking(MPPT)technique to track the maximum power point(MPP)is of high need,even under PSCs.This paper presents an organized and concise review of MPPT techniques implemented for the PV systems in literature along with recent publications on various hardware design methodologies.Their classification is done into four categories,i.e.classical,intelligent,optimal,and hybrid depending on the tracking algorithm utilized to track MPP under PSCs.During uniform insolation,classical methods are highly preferred as there is only one peak in the P-V curve.However,under PSCs,the F-V curve exhibits multiple peaks,one global maximum power point(GMPP)and remaining are local maximum power points(LMPP’s).Under the PSCs,classical methods fail to operate at GMPP and hence there is a need for more advanced MPPT techniques.Every MPPT technique has its advantages and limits,but a streamlined MPPT is drafted in numerous parameters like sensors required,hardware implementation,cost viability,tracking speed and tracking efficiency.This study provides the advancement in this area since some parameter comparison is made at the end of every classification,which might be a prominent base-rule for picking the most gainful sort of MPPT for further research.