This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fi...This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fire is identified.The experimental results show that the progressive collapse of a glulam frame could be described for three stages,namely bending effect stage,catenary effect stage and failure stage,respectively.These stages are discussed in detail to understand the structural behavior before and during collapse.It is demonstrated that the entire frame slopes towards the side of the heated column,and the“overturning”collapse occurs eventually.The catenary effect of beams is the main reason for the progressive collapse of the frame.In addition,a finite element model of a glulam frame is established to simulate the progressive collapse behavior.The effects of axial loads on the columns are summarized.The numerical simulation results agree well with the experimental results,which could verify the effectiveness and practicability of finite element simulation.Furthermore,the progressive collapse resistance of the frame in practical design were proposed.展开更多
Aiming at the seismic-resistant performance of cable-supported glass curtain walls,the methods for formulating nonlinear single degree of freedom system and calculating the nonlinear response spectrums are proposed. T...Aiming at the seismic-resistant performance of cable-supported glass curtain walls,the methods for formulating nonlinear single degree of freedom system and calculating the nonlinear response spectrums are proposed. Taking pretension effect in cables and geometrical nonlinearity into account,the nonlinear acceleration spectrums are calculated under given conditions,such as site and different seismic fortification intensities. The seismic design response spectrums are developed. During vibrating,varying period due to the influence of pretension effect in cables and geometrical nonlinearity drives the maximum period of plateau in nonlinear response spectrums to move towards the long period zone,and the maximum of seismic effect coefficient is larger than that of current seismic code. The theoretical analysis and the example demonstrate that using the nonlinear response spectrums is safe and economical.展开更多
Large span cable-supported structures have been developed rapidly in China, and they always adopt high-strength steel cables as structural members. However, the modulus of elasticity and yield strength of steel materi...Large span cable-supported structures have been developed rapidly in China, and they always adopt high-strength steel cables as structural members. However, the modulus of elasticity and yield strength of steel material will decrease seriously under fire conditions while fire protection is unlikely to be provided for steel cable. Several typical large span cable-supported structures such as cable truss, beam string structure and prestressed cable net are studied on their structural behaviour in this paper. Theoretical formulae are derived in terms of geometrical and material nonlinearity with high temperature effect. Finite element models are also established to simulate the structural performance under fire conditions. The calculation formulae for fire-resisting design are suggested for these three types of structures, while displacement and prestressed force variation rules are also given.展开更多
This paper presents an experimental investigation to identify suitable indices to assess durability of glulam when subjected to freeze-thaw cycles in an exposed enviroenment.In this study,two types of glulam specimens...This paper presents an experimental investigation to identify suitable indices to assess durability of glulam when subjected to freeze-thaw cycles in an exposed enviroenment.In this study,two types of glulam specimens were tested for their performance when subjected to different levels of aging due to freezing and thawing.Effect of aging treatment on various parameters including thickness swelling rate,static bending strength,elastic modulus,shear strength,and peeling rate of adhesive layer were studied.Obtained results showed that freeze-thaw aging treatment did not affect the water-resistance of the specimens as measured by thickness swelling rate and had little effect on the dimensional stability of the material.However,the applied aging treatment weakened the bending resistance of the glulam specimens with more pronounced effects on on low-density wood.On the other hand,bond strength of high-density wood was relatively more affected due to the appliedfreeze-thaw cycles.For highdensity wood,it is suggested that the shear strength of the adhesive layer be taken as an important index to determine the durability of freeze-thaw cycles aging.For low-density wood,on the other hand,the static bending strength can be used as an index to determine the durability of glulam under freeze-thaw cycles aging.展开更多
基金funded by the Jiangsu Province Science Fund for Distinguished Young Scholars(Grant No.BK20211536)Research Foundation of Nanjing Gongda Construction Technology Co.,Ltd.(Grant No.2021RD01).
文摘This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fire is identified.The experimental results show that the progressive collapse of a glulam frame could be described for three stages,namely bending effect stage,catenary effect stage and failure stage,respectively.These stages are discussed in detail to understand the structural behavior before and during collapse.It is demonstrated that the entire frame slopes towards the side of the heated column,and the“overturning”collapse occurs eventually.The catenary effect of beams is the main reason for the progressive collapse of the frame.In addition,a finite element model of a glulam frame is established to simulate the progressive collapse behavior.The effects of axial loads on the columns are summarized.The numerical simulation results agree well with the experimental results,which could verify the effectiveness and practicability of finite element simulation.Furthermore,the progressive collapse resistance of the frame in practical design were proposed.
基金the National Natural Science Foundation of China (Grant No. 50478028).
文摘Aiming at the seismic-resistant performance of cable-supported glass curtain walls,the methods for formulating nonlinear single degree of freedom system and calculating the nonlinear response spectrums are proposed. Taking pretension effect in cables and geometrical nonlinearity into account,the nonlinear acceleration spectrums are calculated under given conditions,such as site and different seismic fortification intensities. The seismic design response spectrums are developed. During vibrating,varying period due to the influence of pretension effect in cables and geometrical nonlinearity drives the maximum period of plateau in nonlinear response spectrums to move towards the long period zone,and the maximum of seismic effect coefficient is larger than that of current seismic code. The theoretical analysis and the example demonstrate that using the nonlinear response spectrums is safe and economical.
文摘Large span cable-supported structures have been developed rapidly in China, and they always adopt high-strength steel cables as structural members. However, the modulus of elasticity and yield strength of steel material will decrease seriously under fire conditions while fire protection is unlikely to be provided for steel cable. Several typical large span cable-supported structures such as cable truss, beam string structure and prestressed cable net are studied on their structural behaviour in this paper. Theoretical formulae are derived in terms of geometrical and material nonlinearity with high temperature effect. Finite element models are also established to simulate the structural performance under fire conditions. The calculation formulae for fire-resisting design are suggested for these three types of structures, while displacement and prestressed force variation rules are also given.
基金the Natural Science Foundation of Jiang-su Province(Grant No.BK20181402)the National Natural Science Foundation of China(Grant No.51878354)+1 种基金a Project Funded by the National First-class Disciplines(PNFD),a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)a Project Funded by the Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University(Nanjing,China).
文摘This paper presents an experimental investigation to identify suitable indices to assess durability of glulam when subjected to freeze-thaw cycles in an exposed enviroenment.In this study,two types of glulam specimens were tested for their performance when subjected to different levels of aging due to freezing and thawing.Effect of aging treatment on various parameters including thickness swelling rate,static bending strength,elastic modulus,shear strength,and peeling rate of adhesive layer were studied.Obtained results showed that freeze-thaw aging treatment did not affect the water-resistance of the specimens as measured by thickness swelling rate and had little effect on the dimensional stability of the material.However,the applied aging treatment weakened the bending resistance of the glulam specimens with more pronounced effects on on low-density wood.On the other hand,bond strength of high-density wood was relatively more affected due to the appliedfreeze-thaw cycles.For highdensity wood,it is suggested that the shear strength of the adhesive layer be taken as an important index to determine the durability of freeze-thaw cycles aging.For low-density wood,on the other hand,the static bending strength can be used as an index to determine the durability of glulam under freeze-thaw cycles aging.