The chemical ionization mass spectra of ten different glucosinolates isolated from rape seed have been studied. More intense diagnostic ions were identified than in the electron impact mass spectra. The method is suit...The chemical ionization mass spectra of ten different glucosinolates isolated from rape seed have been studied. More intense diagnostic ions were identified than in the electron impact mass spectra. The method is suitable for the structure analysis of mixture of glucosinolates.展开更多
[Objective] The paper aimed to study effects of drought stress simulated by PEG on glucosinolates content in Arabidopsis thaliana.[Method] Drought stress was simulated by PEG-6000,ecological seeds of Arabidopsis thali...[Objective] The paper aimed to study effects of drought stress simulated by PEG on glucosinolates content in Arabidopsis thaliana.[Method] Drought stress was simulated by PEG-6000,ecological seeds of Arabidopsis thaliana were cultivated by the control group and drought treatment group respectively,Physical signs of Arabidopsis thaliana and contents of glucosinolates were determined after 0,4,5,6,7 d treatment.[Result] The results showed that leaf water content of rosette leaves was obviously decreased,leaf relative conductivity (characterized by membrane permeability) and the concentration of MDA increased,the extent of damage increased with the increased time.Content of total glucosinolate,aliphatic glucosinolate and indole glucosinolate increased got their maximum after 5 days treatment,and rapidly decreased after 6 and 7 days of treatment,even much lower than the control group.Each kind of glucosinolate changed with difference from each other.4MSOB which made the most proportion of the total glucosinolate changed consistently with the total glucosinolate and difference significant.As a whole,aliphatic glucosinolates were more sensitive to drought than indole glucosinolate.The proportion of some kind glucosinolate,like 4MSOB varied had correlation with the content change.[Conclusion] Drought stress had an effects on the contents of total glucosinolate,aliphatic glucosinolate and indole glucosinolate,which made the glucosinolate participated in defense response of plant to the outside of drought stress,but long-term drought stress in leaves was not conducive to the accumulation of glucosinolates.展开更多
The effects of CO2 enrichment on the growth and glueosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/...The effects of CO2 enrichment on the growth and glueosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those ofindolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition.展开更多
Background: Rapeseed cake is a good source of protein for animal feed but its utilization is limited due to the presence of anti-nutritional substances, such as glucosinolates (GIs), phytic acid, tannins etc. In th...Background: Rapeseed cake is a good source of protein for animal feed but its utilization is limited due to the presence of anti-nutritional substances, such as glucosinolates (GIs), phytic acid, tannins etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of degrading glucosinolates and improving the nutritional quality of rapeseed cake (RSC). The effects of medium composition and incubation conditions on the GIs content in fermented rapeseed cake (FRSC) were investigated, and chemical composition and amino acid in vitro digestibility of RSC substrate fermented under optimal conditions were determined. Results: After 72 h of incubation at 34℃, a 76.89% decrease in GIs of RSC was obtained in solid medium containing 70% RSC, 30% wheat bran at optimal moisture content 60% (w/w). Compared to unfermented RSC, trichloroacetic acid soluble protein (TCA-SP), crude protein and ether extract contents of the FRSC were increased (P〈 0.05) 103.71, 23.02 and 23.54%, respectively. As expected, the contents of NDF and phytic acid declined (P〈 0.05) by 9.12 and 44.60%, respectively. Total amino acids (TAA) and essential amino acids (EAA) contents as well as AA in vitro digestibility of FRSC were improved significantly (P 〈 0.05). Moreover, the enzyme activity of endoglucanase, xylanase, acid protease and phytase were increased (P 〈 0.05) during SSF. Conclusions: Our results indicate that the solid state fermentation offers an effective approach to improving the quality of proteins sources such as rapeseed cake.展开更多
Objective:To determine the content of benzyl glueosinolate(BG) in the pulp and the seed and investigate the anti-cuncer activity of its hydrolysis product in Curica papaya L.Methods: Determination of BG was performe...Objective:To determine the content of benzyl glueosinolate(BG) in the pulp and the seed and investigate the anti-cuncer activity of its hydrolysis product in Curica papaya L.Methods: Determination of BG was performed on an Hypersil BDS C<sub>18</sub> column at the wavelength of 214 nm with 0.1%trifluoroacelic acid(TFA) aqueous solution(A) and 0.1%TFA acelonilrile(B) as the mobile phase.In vitro activity test was adopted with cidtured human lung cancer H69 cell in vitro to investigate the inhibition rate of cell proliferation of benzyl isothiocyanale(BITC) againsl H69 cell.Results:The pulp has more BG before the maturation of papaya and it nearly disappeared after papaya matured,while the seed contains BG at every stage.Activity test demonstrated that the a higher concentration of BITC would have betler inhibition rate of cell proliferation on 1169 cell,and the IC<sub>50</sub> was 6.5μmol/L.Conclusions:BG also can be produced in the pulp of papaya and it will be stored in the seed after the fruit has been matured.The hydrolysis product of BG has certain cancer-prevention anti-cancer activities for human.展开更多
Glucosinolates(GLS) contribute to the unique flavour, nutrition, and plant defence of the Cruciferous vegetables. Understanding the GLS changes through postharvest processing is essential for defined preservation. In ...Glucosinolates(GLS) contribute to the unique flavour, nutrition, and plant defence of the Cruciferous vegetables. Understanding the GLS changes through postharvest processing is essential for defined preservation. In this study, four different fresh-cut types, whole flower(W),floret(F), quarterly cut floret(QF) and shredded floret(FS) of broccoli, were stored for 0, 1, 2 and 3 day(s) to explore GLS responses to postharvest treatments. As a result, seven GLS were identified, mainly including glucoraphanin(RAA), neoglucobrassicin(NEO), and glucobrassicin(GBC)and accounting for 52.69%, 20.12% and 14.99% of the total GLS(21.92 ± 0.48) μmol · g ^(-1 )DW, respectively. FS had the sharpest decrease in GLS after three days of storage(6.55 ± 0.37) μmol · g-1DW, while QF had the least(10.16 ± 0.33) μmol · g ^(-1 )DW. All GLS components decreased over storage, except for 4-methoxyglucobrassicin(4 ME) in FS and QF, suggesting its key role in serious wound defence. The results suggested certain postharvest approaches influenced the flavour and nutrition of broccoli.展开更多
Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that ...Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutantjasmonic acid-hypersensitivel-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea. Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of thejah1-1 mutant to B. cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. Thejah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.展开更多
To understand the regulation mechanism of NaCI on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of brocco...To understand the regulation mechanism of NaCI on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCI were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCI. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCI at relatively low concentrations (20, 40, and 60 mmol/L). NaCI treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCI treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCI could be desirable for human nutrition.展开更多
Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cho...Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.展开更多
Glucosinolates, anthocyanins, total phenols, and vitamin C, as well as antioxidant capacity, were investigated in Chinese kale sprouts treated with both glucose and gibberellic acid(GA_3). The combination of 3%(0.0...Glucosinolates, anthocyanins, total phenols, and vitamin C, as well as antioxidant capacity, were investigated in Chinese kale sprouts treated with both glucose and gibberellic acid(GA_3). The combination of 3%(0.03 g/ml) glucose and 5 μmol/L GA_3 treatment was effective in increasing glucosinolate content while glucose or GA_3 treatment alone did not influence significantly almost all individual glucosinolates or total glucosinolates. The total phenolic content and antioxidant activity of Chinese kale sprouts were enhanced by combined treatment with glucose and GA_3, which could be useful in improving the main health-promoting compounds and antioxidant activity in Chinese kale sprouts.展开更多
Brassicaceae vegetables are an important traditional daily food in China and around the world, which provide nutrients and phytochemicals that are beneficial for human health. Among them, Brassica and Raphanus are wid...Brassicaceae vegetables are an important traditional daily food in China and around the world, which provide nutrients and phytochemicals that are beneficial for human health. Among them, Brassica and Raphanus are widely cultivated and eaten, have been evolved and/or bred for special characteristics during the long history of cultivation. Epidemiological studies suggest that the health benefits of Brassicaceae vegetables are mainly associated with glucosinolates(GSLs) and their hydrolytic products. In this review, we discuss the diversity of common consumed Brassicaceae vegetables and their GSL composition in edible parts. We also discuss the diversity factors affecting GSL content, and the diversity roles and functions of GSL. The information in this review provides guidance for consumers to select vegetables with a high GSL content,optimum edible stages, suitable edible methods, and provides a theoretical basis for crop molecular breeding and market development of GSL products.展开更多
The harmful effect of low-concentration lanthanum [La(Ⅲ)] on plants was investigated by choosing horseradish as a representative of plants and using the methods of physics, analytical chemistry and biology. The resul...The harmful effect of low-concentration lanthanum [La(Ⅲ)] on plants was investigated by choosing horseradish as a representative of plants and using the methods of physics, analytical chemistry and biology. The results show that the genetic expressions related to glucosinolates(GLS, the marker of plant resisting harmful effects) synthesis are significantly increased after the endocytosis in leaf cells is initiated by low-concentrations La(Ⅲ). Consequently, the activities in the key enzymes for catalyzing the GLS synthesis are promoted. Meanwhile, the contents of the precursors and substrates in GLS synthesis are increased. All the above changes accelerate the GLS synthesis and result in the maximum increase in GLS content by 14%. Finally, the uptake of nutrient elements in horseradish is enhanced, and the yield of horseradish is maximally increased by 25%. Therefore, low-concentration La(Ⅲ) is harmful to plants, and plants can promote growth to resist the harmful effects of low-concentration La(Ⅲ) by regulating GLS content. The results show a new insight into how rare earth elements stimulate plant growth, and provide a reference for the risk assessment of rare earth elements.展开更多
Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known a...Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known about the genetic mechanisms of GSL accumulation in rapeseed flowering stalks. In this study, the variation and genetic architecture of GSL metabolites in flowering stalk tissues were investigated for the first time among a panel of 107 accessions. All GSL compounds exhibited continuous and wide variations in the present population. Progoitrin,glucobrassicanapin and gluconapin were the most abundant GSL compounds. Five quantitative trait loci(QTL) significantly associated with three GSL compounds were identified by genome-wide association study. GRA_C04 was under selected during modern breeding, in which the ratio of lower GSL haplotype(HAP2) in the accessions bred before 1990(52.56%) was significantly lower than that after 1990(78.95%). Four candidate genes, BnaA01. SOT16, BnaA06. SOT17, Bna A06. MYB51a, and Bna A06. MYB51b, were identified in the GTL_A01 and 4OH_A06 regions.These findings provide new insights into GSL biosynthesis in flowering stalk tissues and facilitate quality improvement in rapeseed flowering stalks.展开更多
Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen ...Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Re- gardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that ac- cumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elici- tation. Thus, accumulation of IGS is a major metabolic hallmark of SA* and MeJA-mediated systemic response sys- tems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.展开更多
Allopolyploid Brassica juncea is particularly enriched in sinigrin,a kind of 3C aliphatic glucosinolates(GSLs),giving rise to characteristic taste after picking.However,the molecular mechanism underlying 3C aliphatic ...Allopolyploid Brassica juncea is particularly enriched in sinigrin,a kind of 3C aliphatic glucosinolates(GSLs),giving rise to characteristic taste after picking.However,the molecular mechanism underlying 3C aliphatic GSLs biosynthesis in this species remains unknown.In this study,we genome-widely identified GSLs metabolic genes,indicating different evolutionary rate of GSLs metabolic genes between subgenomes of B.juncea.Eight methythioalkylmalate synthase(MAMs)homologs were identified from B.juncea,in which six MAM1s were located in chloroplast and the other two were not detected with any expression.Furthermore,BjMAM1-4,BjMAM1-5,and BjMAM1-6 displayed higher expression levels in leaves than other tissues.Silenced expression analysis revealed that BjMAM1-4 and BjMAM1-6 function in 3C and 4C aliphatic GSLs accumulation.The specificity of the substrate selection for the second cycle reaction is much lower than that of the first cycle,suggesting these genes may preferentially catalyze 3C aliphatic GSLs biosynthesis.Our study provides insights into the molecular mechanism underlying the accumulation of 3C aliphatic GSLs,thereby facilitating the manipulation of aliphatic GSLs content in B.juncea.展开更多
Glucosinolates(GSs) play an important role in plant defense systems and human nutrition.We investigated the content and composition of GSs in the shoots and roots of seven cultivars of pak choi.We found that 'Si Y...Glucosinolates(GSs) play an important role in plant defense systems and human nutrition.We investigated the content and composition of GSs in the shoots and roots of seven cultivars of pak choi.We found that 'Si Yue Man' had the highest total and aliphatic GS contents in the shoots and the highest benzenic GS content in the roots,'Shanghai Qing' contained the highest amounts of benzenic and total GS contents in the roots,while 'Nanjing Zhong Gan Bai' had the lowest benzenic,indole,and total GS contents in both the shoots and roots.Therefore,the 'Si Yue Man' cultivar appears to be a good candidate for future breeding.Variation between the shoots and roots was also examined,and a significant correlation among the total,aliphatic,and some individual GSs was found,which is of value in agricultural breeding.GS concentrations of the leaf,petiole,and root increased dramatically during the period of rapid growth of the dry matter of the plant 10 to 20 d after transplantation,reaching peak values on Day 20 and decreasing on Day 25.We conclude that the pak choi should be harvested and consumed from 20 to 25 d after transplantation to take advantages of the high GS content in the plant.展开更多
Lactobacillus delbrueckii and Bacillus subtilis were employed as a new combination of strains to treat rapeseed meal by solid-state fermentation,aiming to efficiently degrade the glucosinolates,which are the main toxi...Lactobacillus delbrueckii and Bacillus subtilis were employed as a new combination of strains to treat rapeseed meal by solid-state fermentation,aiming to efficiently degrade the glucosinolates,which are the main toxin in the meal.Single-factor tests and Response surface methodology(RSM)were used to optimize the fermentation parameters.Under the optimum fermentation parameters of 15%total injection volume of the mixture of Lactobacillus delbrueckii and Bacillus subtilis with a ratio of 2:1,bran content of16%,feed to water ratio of 1:1.5,fermentation temperature of 36°C and fermentation time of 72 h,the content of glucosinolates in rapeseed meal was decreased from 64.558μmol/g to 3.473μmol/g,reaching a high degradation rate(94.62%).The high detoxification rate by a consortium of Lactobacillus delbrueckii and Bacillus subtilis provides a bright application prospect in feed utilization of rapeseed meal.展开更多
The theory and associated selection methods of classical quantitative genetics are based on the multifactorial or polygene hypothesis.Major genes or quantitative trait loci(QTL)in modern quantitative genetics based o...The theory and associated selection methods of classical quantitative genetics are based on the multifactorial or polygene hypothesis.Major genes or quantitative trait loci(QTL)in modern quantitative genetics based on a“major gene plus polygenes”genetic system have been paid much attention in genetic studies.However,it remains unclear how the numerous minor genes act,although the polygene theory has sustained genetic improvement in plants and animals for more than a hundred years.In the present study,we identified a novel minor gene,BnSOT-like1(BnaA09g53490D),which is a sulfotransferase(SOT)gene catalyzing the formation of the core glucosinolate(GSL)structure in Brassica napus.This gene has been occasionally found during investigations of plant height-related genes,but has not been identified by QTL mapping because of its small phenotypic effects on GSL content.The overexpression of BnSOT-like1 up-regulated the expression of aliphatic GSL-associated genes,leading to a high seed aliphatic GSL content,and the overexpression of the allelic gene Bnsot-like1 did not increase seed GSL content.These findings suggest that the SOT gene has a marked effect on a quantitative trait from a reverse genetics standpoint,but a minor effect on the quantitative trait in its natural biological state.Because of the redundancy of GSL biosynthetic genes in the allotetraploid species B.napus,mutations of a single functional gene in the pathway will not result in significant phenotypic changes,and that the genes in biosynthetic pathways such as BnSOT-like1 in our study have minor effects and may be called polygenes in contrast to the reported three regulatory genes(BnHAG1s)which strongly affect GSL content in B.napus.The present study has shed light on a minor gene for a quantitative trait.展开更多
Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selen...Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selenium treatment activated SMT expression and promoted the accumulation of glucosinolates(GSLs)and sulforaphane,but the roles and functional mechanisms of SMT in mediating GSLs and sulforaphane synthesis remain unclear.In this study,we identified the BoSMT gene in broccoli and uncovered its roles in mediating GSLs biosynthesis.Transgenic assays revealed that BoSMT is involved in SeMSC biosynthesis in broccoli.More importantly,the contents of GSLs and sulforaphane were significantly increased in the BoSMT-overexpressing broccoli lines but decreased in the knockdown lines,suggesting that BoSMT played a positive role in regulating GSLs and sulforaphane synthesis.Further evidence indicated that BoSMT-mediated overaccumulation of GSLs and sulforaphane might be due to the increase in the endogenous SeMSC content.Compared with the mock(water)treatment,selenite-induced significantly increases of the SeMSC content in the BoSMT-knockdown plants partially compensated the phenotype of GSLs and sulforaphane loss.Compared with the mock treatment,exogenous SeMSC treatment significantly increased the contents of GSL and sulforaphane and activated GSL synthesis-related gene expression,suggesting that SeMSC acted as a positive regulator for GSL and sulforaphane production.Our findings provided novel insights into selenium-mediated GSLs and sulforaphane accumulation.The genetic manipulation of BoSMT might be a useful strategy for improving the dietary nutritional values of broccoli.展开更多
This study was conducted to verify the inheritance of certain characters of rapeseed including erucic acid, glucosinolate and oleic acid contents by using generation mean analysis. The cross of lines Ⅲ174×Zi20 ...This study was conducted to verify the inheritance of certain characters of rapeseed including erucic acid, glucosinolate and oleic acid contents by using generation mean analysis. The cross of lines Ⅲ174×Zi20 (F1), F2, BC1 (F1×P1), BC2 (F1×P2), and parents (P1 and P2) were evaluated in the field. Data were measured on individual plants for oleic acid, erucic acid, and glucosinolate contents. Transgressive variations in F2 population were observed for oleic acid content, indicating that dominance and recessive genes distributed in both parents. Scaling test indicated that the effects of genes controlling these characters did not follow the additivedominance model. The data for three characters were analyzed using six parameter models and found that one or more types of epistatic gene effects were important for glucosinolate content. High broad sense heritabilities were obtained for erucic acid, oleic acid, and glucosinolate contents with the values of 98.97%, 93.68%, and 86.17%, respectively. Two major gene pairs were found to control the expression of erucic acid and oleic acid contents, while three major gene pairs were detected to control glucosinolate content.展开更多
文摘The chemical ionization mass spectra of ten different glucosinolates isolated from rape seed have been studied. More intense diagnostic ions were identified than in the electron impact mass spectra. The method is suitable for the structure analysis of mixture of glucosinolates.
文摘[Objective] The paper aimed to study effects of drought stress simulated by PEG on glucosinolates content in Arabidopsis thaliana.[Method] Drought stress was simulated by PEG-6000,ecological seeds of Arabidopsis thaliana were cultivated by the control group and drought treatment group respectively,Physical signs of Arabidopsis thaliana and contents of glucosinolates were determined after 0,4,5,6,7 d treatment.[Result] The results showed that leaf water content of rosette leaves was obviously decreased,leaf relative conductivity (characterized by membrane permeability) and the concentration of MDA increased,the extent of damage increased with the increased time.Content of total glucosinolate,aliphatic glucosinolate and indole glucosinolate increased got their maximum after 5 days treatment,and rapidly decreased after 6 and 7 days of treatment,even much lower than the control group.Each kind of glucosinolate changed with difference from each other.4MSOB which made the most proportion of the total glucosinolate changed consistently with the total glucosinolate and difference significant.As a whole,aliphatic glucosinolates were more sensitive to drought than indole glucosinolate.The proportion of some kind glucosinolate,like 4MSOB varied had correlation with the content change.[Conclusion] Drought stress had an effects on the contents of total glucosinolate,aliphatic glucosinolate and indole glucosinolate,which made the glucosinolate participated in defense response of plant to the outside of drought stress,but long-term drought stress in leaves was not conducive to the accumulation of glucosinolates.
基金Project (No. 2007CB109305) supported by the National Basic Research Program (973) of China
文摘The effects of CO2 enrichment on the growth and glueosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those ofindolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition.
基金granted by the Earmarked Fund for Modern Agro-industry Technology Research System of China(CARS-36)Feed Biotechnology Project of Sichuan Province of China with grant number 2010GZ0193
文摘Background: Rapeseed cake is a good source of protein for animal feed but its utilization is limited due to the presence of anti-nutritional substances, such as glucosinolates (GIs), phytic acid, tannins etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of degrading glucosinolates and improving the nutritional quality of rapeseed cake (RSC). The effects of medium composition and incubation conditions on the GIs content in fermented rapeseed cake (FRSC) were investigated, and chemical composition and amino acid in vitro digestibility of RSC substrate fermented under optimal conditions were determined. Results: After 72 h of incubation at 34℃, a 76.89% decrease in GIs of RSC was obtained in solid medium containing 70% RSC, 30% wheat bran at optimal moisture content 60% (w/w). Compared to unfermented RSC, trichloroacetic acid soluble protein (TCA-SP), crude protein and ether extract contents of the FRSC were increased (P〈 0.05) 103.71, 23.02 and 23.54%, respectively. As expected, the contents of NDF and phytic acid declined (P〈 0.05) by 9.12 and 44.60%, respectively. Total amino acids (TAA) and essential amino acids (EAA) contents as well as AA in vitro digestibility of FRSC were improved significantly (P 〈 0.05). Moreover, the enzyme activity of endoglucanase, xylanase, acid protease and phytase were increased (P 〈 0.05) during SSF. Conclusions: Our results indicate that the solid state fermentation offers an effective approach to improving the quality of proteins sources such as rapeseed cake.
基金Supported by National Key Technologies R & D Program of China (2009BADA2B02-04)Natural Science Fund of Hainan Province(No.309042)Natural Science Fund of China(No.31171822)
文摘Objective:To determine the content of benzyl glueosinolate(BG) in the pulp and the seed and investigate the anti-cuncer activity of its hydrolysis product in Curica papaya L.Methods: Determination of BG was performed on an Hypersil BDS C<sub>18</sub> column at the wavelength of 214 nm with 0.1%trifluoroacelic acid(TFA) aqueous solution(A) and 0.1%TFA acelonilrile(B) as the mobile phase.In vitro activity test was adopted with cidtured human lung cancer H69 cell in vitro to investigate the inhibition rate of cell proliferation of benzyl isothiocyanale(BITC) againsl H69 cell.Results:The pulp has more BG before the maturation of papaya and it nearly disappeared after papaya matured,while the seed contains BG at every stage.Activity test demonstrated that the a higher concentration of BITC would have betler inhibition rate of cell proliferation on 1169 cell,and the IC<sub>50</sub> was 6.5μmol/L.Conclusions:BG also can be produced in the pulp of papaya and it will be stored in the seed after the fruit has been matured.The hydrolysis product of BG has certain cancer-prevention anti-cancer activities for human.
基金supported by the Collaborative Innovation Center of the Beijing Academy of Agriculture and Forestry Sciences(Grant No.KJCX201915)the Youth Scientific Research Funds of Beijing Academy of Agriculture and Forestry Sciences(Grant No.QNJJ201914)the Innovation and Capacity-building Project of Beijing Academy of Agriculture and Forestry Sciences(Grant No.KJCX20200213).
文摘Glucosinolates(GLS) contribute to the unique flavour, nutrition, and plant defence of the Cruciferous vegetables. Understanding the GLS changes through postharvest processing is essential for defined preservation. In this study, four different fresh-cut types, whole flower(W),floret(F), quarterly cut floret(QF) and shredded floret(FS) of broccoli, were stored for 0, 1, 2 and 3 day(s) to explore GLS responses to postharvest treatments. As a result, seven GLS were identified, mainly including glucoraphanin(RAA), neoglucobrassicin(NEO), and glucobrassicin(GBC)and accounting for 52.69%, 20.12% and 14.99% of the total GLS(21.92 ± 0.48) μmol · g ^(-1 )DW, respectively. FS had the sharpest decrease in GLS after three days of storage(6.55 ± 0.37) μmol · g-1DW, while QF had the least(10.16 ± 0.33) μmol · g ^(-1 )DW. All GLS components decreased over storage, except for 4-methoxyglucobrassicin(4 ME) in FS and QF, suggesting its key role in serious wound defence. The results suggested certain postharvest approaches influenced the flavour and nutrition of broccoli.
基金We gratefully acknowledge Dr Jianru Zuo (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China) for providing T-DNA mutagenized population of Arabidopsis, Dr Salome Prat (Institut de Biologia Molecular de Barcelona, Spain) for providing homozygous atmyc2-2 mutant (T-DNA insertion line SALK_083483) seeds and Dr Jane Glazebrook for assisting with camalexin measurements. This work was supported by grants from the Chinese Academy of Sciences (KSCX2- YW-N-045, KSCX2-YW-N-015), the Ministry of Agriculture of China (2008ZX08009-003-001) and the Ministry of Science and Technology of China (2007CB948201, 2006AA10A116). Work in the laboratory of Jerry D Cohen was supported by grants from the US National Science Foundation (MCB-0725149 and DBI- PGRP-0606666) and the USDA, National Research Initiative (2005-35318-16197).
文摘Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutantjasmonic acid-hypersensitivel-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea. Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of thejah1-1 mutant to B. cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. Thejah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.
基金Project supported by the National High-Tech R&D Program(863) of China(No.2008AA10Z111)the National Natural Science Foundation of China(No.30900984)+1 种基金the Fok Ying Tong Education Foundation (No.104034)the Program for New Century Excellent Talents in University(No.NCET-05-0516),China
文摘To understand the regulation mechanism of NaCI on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCI were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCI. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCI at relatively low concentrations (20, 40, and 60 mmol/L). NaCI treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCI treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCI could be desirable for human nutrition.
文摘Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.
基金Project supported by the National Natural Science Foundation of China(Nos.31270343 and 31500247)the China Postdoctoral Science Foundation(No.2015M581922)
文摘Glucosinolates, anthocyanins, total phenols, and vitamin C, as well as antioxidant capacity, were investigated in Chinese kale sprouts treated with both glucose and gibberellic acid(GA_3). The combination of 3%(0.03 g/ml) glucose and 5 μmol/L GA_3 treatment was effective in increasing glucosinolate content while glucose or GA_3 treatment alone did not influence significantly almost all individual glucosinolates or total glucosinolates. The total phenolic content and antioxidant activity of Chinese kale sprouts were enhanced by combined treatment with glucose and GA_3, which could be useful in improving the main health-promoting compounds and antioxidant activity in Chinese kale sprouts.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 31972394, 31501748)。
文摘Brassicaceae vegetables are an important traditional daily food in China and around the world, which provide nutrients and phytochemicals that are beneficial for human health. Among them, Brassica and Raphanus are widely cultivated and eaten, have been evolved and/or bred for special characteristics during the long history of cultivation. Epidemiological studies suggest that the health benefits of Brassicaceae vegetables are mainly associated with glucosinolates(GSLs) and their hydrolytic products. In this review, we discuss the diversity of common consumed Brassicaceae vegetables and their GSL composition in edible parts. We also discuss the diversity factors affecting GSL content, and the diversity roles and functions of GSL. The information in this review provides guidance for consumers to select vegetables with a high GSL content,optimum edible stages, suitable edible methods, and provides a theoretical basis for crop molecular breeding and market development of GSL products.
基金Project supported by the National Natural Science Foundation of China(21371100,31170477,21501068)Ph.D.Programs Foundation of Ministry of Education of China(20130093120006)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The harmful effect of low-concentration lanthanum [La(Ⅲ)] on plants was investigated by choosing horseradish as a representative of plants and using the methods of physics, analytical chemistry and biology. The results show that the genetic expressions related to glucosinolates(GLS, the marker of plant resisting harmful effects) synthesis are significantly increased after the endocytosis in leaf cells is initiated by low-concentrations La(Ⅲ). Consequently, the activities in the key enzymes for catalyzing the GLS synthesis are promoted. Meanwhile, the contents of the precursors and substrates in GLS synthesis are increased. All the above changes accelerate the GLS synthesis and result in the maximum increase in GLS content by 14%. Finally, the uptake of nutrient elements in horseradish is enhanced, and the yield of horseradish is maximally increased by 25%. Therefore, low-concentration La(Ⅲ) is harmful to plants, and plants can promote growth to resist the harmful effects of low-concentration La(Ⅲ) by regulating GLS content. The results show a new insight into how rare earth elements stimulate plant growth, and provide a reference for the risk assessment of rare earth elements.
基金supported by the Key Research and Development project of Hubei Province (Grant Nos. 2020BBB083, 2021BBA097 and 2021BBA102)the National Key Research and Development Program of China (Grant No. 2016YFD0100202)。
文摘Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known about the genetic mechanisms of GSL accumulation in rapeseed flowering stalks. In this study, the variation and genetic architecture of GSL metabolites in flowering stalk tissues were investigated for the first time among a panel of 107 accessions. All GSL compounds exhibited continuous and wide variations in the present population. Progoitrin,glucobrassicanapin and gluconapin were the most abundant GSL compounds. Five quantitative trait loci(QTL) significantly associated with three GSL compounds were identified by genome-wide association study. GRA_C04 was under selected during modern breeding, in which the ratio of lower GSL haplotype(HAP2) in the accessions bred before 1990(52.56%) was significantly lower than that after 1990(78.95%). Four candidate genes, BnaA01. SOT16, BnaA06. SOT17, Bna A06. MYB51a, and Bna A06. MYB51b, were identified in the GTL_A01 and 4OH_A06 regions.These findings provide new insights into GSL biosynthesis in flowering stalk tissues and facilitate quality improvement in rapeseed flowering stalks.
基金supported by the National Natural Science Foundation of China(Nos.31000916 and 30871718)the Zhejiang Provincial Natural Science Foundation of China(Nos.LY14C150005,LZ14C150001,and Y3090538)+3 种基金the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars from the Ministry of Education of Chinathe Climbing Program for Young Academic Leaders in Universities of Zhejiang Province(No.pd2013230)the Qianjiang Talent Project of Zhejiang Province(No.qjd0902010)the Key Sci-Technology Project of Zhejiang Province(No.2010C12004),China
文摘Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Re- gardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that ac- cumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elici- tation. Thus, accumulation of IGS is a major metabolic hallmark of SA* and MeJA-mediated systemic response sys- tems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.
基金The authors thank Prof.Q.Wang for GSLs analysis.This work was supported by grants from the National Natural Science Foundation of Zhejiang Province(Grant no.LZ20C150002)the National Natural Science Foundation of China(Grant no.31872095).
文摘Allopolyploid Brassica juncea is particularly enriched in sinigrin,a kind of 3C aliphatic glucosinolates(GSLs),giving rise to characteristic taste after picking.However,the molecular mechanism underlying 3C aliphatic GSLs biosynthesis in this species remains unknown.In this study,we genome-widely identified GSLs metabolic genes,indicating different evolutionary rate of GSLs metabolic genes between subgenomes of B.juncea.Eight methythioalkylmalate synthase(MAMs)homologs were identified from B.juncea,in which six MAM1s were located in chloroplast and the other two were not detected with any expression.Furthermore,BjMAM1-4,BjMAM1-5,and BjMAM1-6 displayed higher expression levels in leaves than other tissues.Silenced expression analysis revealed that BjMAM1-4 and BjMAM1-6 function in 3C and 4C aliphatic GSLs accumulation.The specificity of the substrate selection for the second cycle reaction is much lower than that of the first cycle,suggesting these genes may preferentially catalyze 3C aliphatic GSLs biosynthesis.Our study provides insights into the molecular mechanism underlying the accumulation of 3C aliphatic GSLs,thereby facilitating the manipulation of aliphatic GSLs content in B.juncea.
基金Project supported by the National Natural Science Foundation of China (Nos.30871718 and 31201620)the Zhejiang Provincial Natural Science Foundation of China(No.R3080360)the Fund for Zhejiang Higher School Innovative Research Team(No.T200916),China
文摘Glucosinolates(GSs) play an important role in plant defense systems and human nutrition.We investigated the content and composition of GSs in the shoots and roots of seven cultivars of pak choi.We found that 'Si Yue Man' had the highest total and aliphatic GS contents in the shoots and the highest benzenic GS content in the roots,'Shanghai Qing' contained the highest amounts of benzenic and total GS contents in the roots,while 'Nanjing Zhong Gan Bai' had the lowest benzenic,indole,and total GS contents in both the shoots and roots.Therefore,the 'Si Yue Man' cultivar appears to be a good candidate for future breeding.Variation between the shoots and roots was also examined,and a significant correlation among the total,aliphatic,and some individual GSs was found,which is of value in agricultural breeding.GS concentrations of the leaf,petiole,and root increased dramatically during the period of rapid growth of the dry matter of the plant 10 to 20 d after transplantation,reaching peak values on Day 20 and decreasing on Day 25.We conclude that the pak choi should be harvested and consumed from 20 to 25 d after transplantation to take advantages of the high GS content in the plant.
基金financially supported by the Education Department of Sichuan Province(18ZB0289)。
文摘Lactobacillus delbrueckii and Bacillus subtilis were employed as a new combination of strains to treat rapeseed meal by solid-state fermentation,aiming to efficiently degrade the glucosinolates,which are the main toxin in the meal.Single-factor tests and Response surface methodology(RSM)were used to optimize the fermentation parameters.Under the optimum fermentation parameters of 15%total injection volume of the mixture of Lactobacillus delbrueckii and Bacillus subtilis with a ratio of 2:1,bran content of16%,feed to water ratio of 1:1.5,fermentation temperature of 36°C and fermentation time of 72 h,the content of glucosinolates in rapeseed meal was decreased from 64.558μmol/g to 3.473μmol/g,reaching a high degradation rate(94.62%).The high detoxification rate by a consortium of Lactobacillus delbrueckii and Bacillus subtilis provides a bright application prospect in feed utilization of rapeseed meal.
基金This work was supported by the National Key Research and Development Program of China(2018YFD0100600)the National Natural Science Foundation of China(31270386)the Cyrus Tang Seed Innovation Center at Nanjing Agricultural University.
文摘The theory and associated selection methods of classical quantitative genetics are based on the multifactorial or polygene hypothesis.Major genes or quantitative trait loci(QTL)in modern quantitative genetics based on a“major gene plus polygenes”genetic system have been paid much attention in genetic studies.However,it remains unclear how the numerous minor genes act,although the polygene theory has sustained genetic improvement in plants and animals for more than a hundred years.In the present study,we identified a novel minor gene,BnSOT-like1(BnaA09g53490D),which is a sulfotransferase(SOT)gene catalyzing the formation of the core glucosinolate(GSL)structure in Brassica napus.This gene has been occasionally found during investigations of plant height-related genes,but has not been identified by QTL mapping because of its small phenotypic effects on GSL content.The overexpression of BnSOT-like1 up-regulated the expression of aliphatic GSL-associated genes,leading to a high seed aliphatic GSL content,and the overexpression of the allelic gene Bnsot-like1 did not increase seed GSL content.These findings suggest that the SOT gene has a marked effect on a quantitative trait from a reverse genetics standpoint,but a minor effect on the quantitative trait in its natural biological state.Because of the redundancy of GSL biosynthetic genes in the allotetraploid species B.napus,mutations of a single functional gene in the pathway will not result in significant phenotypic changes,and that the genes in biosynthetic pathways such as BnSOT-like1 in our study have minor effects and may be called polygenes in contrast to the reported three regulatory genes(BnHAG1s)which strongly affect GSL content in B.napus.The present study has shed light on a minor gene for a quantitative trait.
基金the Projects of International Cooperation National Key R&D Program of China(Grant No.2022YFE0108300)the National Key Research and Development Program of China(Grant No.2022YFF1003000)the National Natural Science Foundation of China(Grant Nos.32372682,32272747,32072585,32072568).
文摘Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selenium treatment activated SMT expression and promoted the accumulation of glucosinolates(GSLs)and sulforaphane,but the roles and functional mechanisms of SMT in mediating GSLs and sulforaphane synthesis remain unclear.In this study,we identified the BoSMT gene in broccoli and uncovered its roles in mediating GSLs biosynthesis.Transgenic assays revealed that BoSMT is involved in SeMSC biosynthesis in broccoli.More importantly,the contents of GSLs and sulforaphane were significantly increased in the BoSMT-overexpressing broccoli lines but decreased in the knockdown lines,suggesting that BoSMT played a positive role in regulating GSLs and sulforaphane synthesis.Further evidence indicated that BoSMT-mediated overaccumulation of GSLs and sulforaphane might be due to the increase in the endogenous SeMSC content.Compared with the mock(water)treatment,selenite-induced significantly increases of the SeMSC content in the BoSMT-knockdown plants partially compensated the phenotype of GSLs and sulforaphane loss.Compared with the mock treatment,exogenous SeMSC treatment significantly increased the contents of GSL and sulforaphane and activated GSL synthesis-related gene expression,suggesting that SeMSC acted as a positive regulator for GSL and sulforaphane production.Our findings provided novel insights into selenium-mediated GSLs and sulforaphane accumulation.The genetic manipulation of BoSMT might be a useful strategy for improving the dietary nutritional values of broccoli.
基金Supportd by the Governor Special Funds of Guizhou (2008)76
文摘This study was conducted to verify the inheritance of certain characters of rapeseed including erucic acid, glucosinolate and oleic acid contents by using generation mean analysis. The cross of lines Ⅲ174×Zi20 (F1), F2, BC1 (F1×P1), BC2 (F1×P2), and parents (P1 and P2) were evaluated in the field. Data were measured on individual plants for oleic acid, erucic acid, and glucosinolate contents. Transgressive variations in F2 population were observed for oleic acid content, indicating that dominance and recessive genes distributed in both parents. Scaling test indicated that the effects of genes controlling these characters did not follow the additivedominance model. The data for three characters were analyzed using six parameter models and found that one or more types of epistatic gene effects were important for glucosinolate content. High broad sense heritabilities were obtained for erucic acid, oleic acid, and glucosinolate contents with the values of 98.97%, 93.68%, and 86.17%, respectively. Two major gene pairs were found to control the expression of erucic acid and oleic acid contents, while three major gene pairs were detected to control glucosinolate content.