With glucose as the template compound,a p H-sensitive hydrogel was prepared by polymerization of the modified glucose,acrylamide,and acrylic acid.The porous hydrogel showed the highest swelling ratio of 42.7 g/g at p ...With glucose as the template compound,a p H-sensitive hydrogel was prepared by polymerization of the modified glucose,acrylamide,and acrylic acid.The porous hydrogel showed the highest swelling ratio of 42.7 g/g at p H=7.4 and the best adsorption of methylene blue at p H=7.The Langmuir isotherm fitted very well to the equilibrium adsorption data with the maximum adsorption capacity of 49.1 mg/g.The adsorption kinetics were well described by the pseudo 2^(nd) order model.Adsorption studies suggested that the p H-sensitive glucose-based hydrogel could be used as an adsorbent for the removal of methylene blue from wastewater.Other applications of the hydrogel are on the way,such as scaffolding in the biomedical field and soil conditioning in agriculture.展开更多
基金supported by the Research Grant of Jiangsu Province Biomass Energy and Materials Laboratory (JSBEM-S-201510)the Natural Science Foundation of Jiangsu Province of China (BK20160151)
文摘With glucose as the template compound,a p H-sensitive hydrogel was prepared by polymerization of the modified glucose,acrylamide,and acrylic acid.The porous hydrogel showed the highest swelling ratio of 42.7 g/g at p H=7.4 and the best adsorption of methylene blue at p H=7.The Langmuir isotherm fitted very well to the equilibrium adsorption data with the maximum adsorption capacity of 49.1 mg/g.The adsorption kinetics were well described by the pseudo 2^(nd) order model.Adsorption studies suggested that the p H-sensitive glucose-based hydrogel could be used as an adsorbent for the removal of methylene blue from wastewater.Other applications of the hydrogel are on the way,such as scaffolding in the biomedical field and soil conditioning in agriculture.