The aim of this paper is to compare sample quality across two probability samples and one that uses probabilistic cluster sampling combined with random route and quota sampling within the selected clusters in order to...The aim of this paper is to compare sample quality across two probability samples and one that uses probabilistic cluster sampling combined with random route and quota sampling within the selected clusters in order to define the ultimate survey units. All of them use the face-to-face interview as the survey procedure. The hypothesis to be tested is that it is possible to achieve the same degree of representativeness using a combination of random route sampling and quota sampling (with substitution) as it can be achieved by means of household sampling (without substitution) based on the municipal register of inhabitants. We have found such marked differences in the age and gender distribution of the probability sampling, where the deviations exceed 6%. A different picture emerges when it comes to comparing the employment variables, where the quota sampling overestimates the economic activity rate (2.5%) and the unemployment rate (8%) and underestimates the employment rate (3.46%).展开更多
Motif-based graph local clustering(MGLC)algorithms are gen-erally designed with the two-phase framework,which gets the motif weight for each edge beforehand and then conducts the local clustering algorithm on the weig...Motif-based graph local clustering(MGLC)algorithms are gen-erally designed with the two-phase framework,which gets the motif weight for each edge beforehand and then conducts the local clustering algorithm on the weighted graph to output the result.Despite correctness,this frame-work brings limitations on both practical and theoretical aspects and is less applicable in real interactive situations.This research develops a purely local and index-adaptive method,Index-adaptive Triangle-based Graph Local Clustering(TGLC+),to solve the MGLC problem w.r.t.triangle.TGLC+combines the approximated Monte-Carlo method Triangle-based Random Walk(TRW)and deterministic Brute-Force method Triangle-based Forward Push(TFP)adaptively to estimate the Personalized PageRank(PPR)vector without calculating the exact triangle-weighted transition probability and then outputs the clustering result by conducting the standard sweep procedure.This paper presents the efficiency of TGLC+through theoretical analysis and demonstrates its effectiveness through extensive experiments.To our knowl-edge,TGLC+is the first to solve the MGLC problem without computing the motif weight beforehand,thus achieving better efficiency with comparable effectiveness.TGLC+is suitable for large-scale and interactive graph analysis tasks,including visualization,system optimization,and decision-making.展开更多
Motif-based graph local clustering(MGLC)is a popular method for graph mining tasks due to its various applications.However,the traditional two-phase approach of precomputing motif weights before performing local clust...Motif-based graph local clustering(MGLC)is a popular method for graph mining tasks due to its various applications.However,the traditional two-phase approach of precomputing motif weights before performing local clustering loses locality and is impractical for large graphs.While some attempts have been made to address the efficiency bottleneck,there is still no applicable algorithm for large scale graphs with billions of edges.In this paper,we propose a purely local and index-free method called Index-free Triangle-based Graph Local Clustering(TGLC^(*))to solve the MGLC problem w.r.t.a triangle.TGLC^(*)directly estimates the Personalized PageRank(PPR)vector using random walks with the desired triangleweighted distribution and proposes the clustering result using a standard sweep procedure.We demonstrate TGLC^(*)’s scalability through theoretical analysis and its practical benefits through a novel visualization layout.TGLC^(*)is the first algorithm to solve the MGLC problem without precomputing the motif weight.Extensive experiments on seven real-world large-scale datasets show that TGLC^(*)is applicable and scalable for large graphs.展开更多
文摘The aim of this paper is to compare sample quality across two probability samples and one that uses probabilistic cluster sampling combined with random route and quota sampling within the selected clusters in order to define the ultimate survey units. All of them use the face-to-face interview as the survey procedure. The hypothesis to be tested is that it is possible to achieve the same degree of representativeness using a combination of random route sampling and quota sampling (with substitution) as it can be achieved by means of household sampling (without substitution) based on the municipal register of inhabitants. We have found such marked differences in the age and gender distribution of the probability sampling, where the deviations exceed 6%. A different picture emerges when it comes to comparing the employment variables, where the quota sampling overestimates the economic activity rate (2.5%) and the unemployment rate (8%) and underestimates the employment rate (3.46%).
基金supported by the Fundamental Research Funds for the Central Universities(No.2020JS005).
文摘Motif-based graph local clustering(MGLC)algorithms are gen-erally designed with the two-phase framework,which gets the motif weight for each edge beforehand and then conducts the local clustering algorithm on the weighted graph to output the result.Despite correctness,this frame-work brings limitations on both practical and theoretical aspects and is less applicable in real interactive situations.This research develops a purely local and index-adaptive method,Index-adaptive Triangle-based Graph Local Clustering(TGLC+),to solve the MGLC problem w.r.t.triangle.TGLC+combines the approximated Monte-Carlo method Triangle-based Random Walk(TRW)and deterministic Brute-Force method Triangle-based Forward Push(TFP)adaptively to estimate the Personalized PageRank(PPR)vector without calculating the exact triangle-weighted transition probability and then outputs the clustering result by conducting the standard sweep procedure.This paper presents the efficiency of TGLC+through theoretical analysis and demonstrates its effectiveness through extensive experiments.To our knowl-edge,TGLC+is the first to solve the MGLC problem without computing the motif weight beforehand,thus achieving better efficiency with comparable effectiveness.TGLC+is suitable for large-scale and interactive graph analysis tasks,including visualization,system optimization,and decision-making.
基金supported by the Fundamental Research Funds for the Central Universities(No.2020JS005).
文摘Motif-based graph local clustering(MGLC)is a popular method for graph mining tasks due to its various applications.However,the traditional two-phase approach of precomputing motif weights before performing local clustering loses locality and is impractical for large graphs.While some attempts have been made to address the efficiency bottleneck,there is still no applicable algorithm for large scale graphs with billions of edges.In this paper,we propose a purely local and index-free method called Index-free Triangle-based Graph Local Clustering(TGLC^(*))to solve the MGLC problem w.r.t.a triangle.TGLC^(*)directly estimates the Personalized PageRank(PPR)vector using random walks with the desired triangleweighted distribution and proposes the clustering result using a standard sweep procedure.We demonstrate TGLC^(*)’s scalability through theoretical analysis and its practical benefits through a novel visualization layout.TGLC^(*)is the first algorithm to solve the MGLC problem without precomputing the motif weight.Extensive experiments on seven real-world large-scale datasets show that TGLC^(*)is applicable and scalable for large graphs.