期刊文献+
共找到2,964篇文章
< 1 2 149 >
每页显示 20 50 100
Seeker optimization algorithm:a novel stochastic search algorithm for global numerical optimization 被引量:15
1
作者 Chaohua Dai Weirong Chen +1 位作者 Yonghua Song Yunfang Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期300-311,共12页
A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search... A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search direction is based on empir- ical gradients by evaluating the response to the position changes, while step length is based on uncertainty reasoning by using a simple fuzzy rule. The effectiveness of the SOA is evaluated by using a challenging set of typically complex functions in compari- son to differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms. The simulation results show that the performance of the SOA is superior or comparable to that of the other algorithms. 展开更多
关键词 swarm intelligence global optimization human searching behaviors seeker optimization algorithm.
在线阅读 下载PDF
A Global Best-guided Firefly Algorithm for Engineering Problems 被引量:6
2
作者 Mohsen Zare Mojtaba Ghasemi +4 位作者 Amir Zahedi Keyvan Golalipour Soleiman Kadkhoda Mohammadi Seyedali Mirjalili Laith Abualigah 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2359-2388,共30页
The Firefly Algorithm(FA)is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating.This article proposes a method based on Differential Evoluti... The Firefly Algorithm(FA)is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating.This article proposes a method based on Differential Evolution(DE)/current-to-best/1 for enhancing the FA's movement process.The proposed modification increases the global search ability and the convergence rates while maintaining a balance between exploration and exploitation by deploying the global best solution.However,employing the best solution can lead to premature algorithm convergence,but this study handles this issue using a loop adjacent to the algorithm's main loop.Additionally,the suggested algorithm’s sensitivity to the alpha parameter is reduced compared to the original FA.The GbFA surpasses both the original and five-version of enhanced FAs in finding the optimal solution to 30 CEC2014 real parameter benchmark problems with all selected alpha values.Additionally,the CEC 2017 benchmark functions and the eight engineering optimization challenges are also utilized to evaluate GbFA’s efficacy and robustness on real-world problems against several enhanced algorithms.In all cases,GbFA provides the optimal result compared to other methods.Note that the source code of the GbFA algorithm is publicly available at https://www.optim-app.com/projects/gbfa. 展开更多
关键词 Firefly algorithm New movement vector global best-guided firefly algorithm global optimization Engineering design
在线阅读 下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:21
3
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
在线阅读 下载PDF
GLOBAL OPTIMIZATION OF PUMP CONFIGURATION PROBLEM USING EXTENDED CROWDING GENETIC ALGORITHM 被引量:3
4
作者 ZhangGuijun WuTihua YeRong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期247-252,共6页
An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective f... An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective function contained several local optima and globaloptimality could not be ensured by all the traditional MINLP optimization method. The concepts ofspecies conserving and composite encoding are introduced to crowding genetic algorithm (CGA) formaintain the diversity of population more effectively and coping with the continuous and/or discretevariables in MINLP problem. The solution of three-levels pump configuration got from DICOPT++software (OA algorithm) is also given. By comparing with the solutions obtained from DICOPT++, ECPmethod, and MIN-MIN method, the ECGA algorithm proved to be very effective in finding the globaloptimal solution of multi-levels pump configuration via using the problem-specific information. 展开更多
关键词 Pump configuration problem Extended crowding genetic algorithm Speciesconserving Composite encoding global optimization
在线阅读 下载PDF
Global Convergence Analysis of Non-Crossover Genetic Algorithm and Its Application to Optimization 被引量:3
5
作者 Dai Xiaoming, Sun Rang, Zou Runmin2, Xu Chao & Shao Huihe(. Dept. of Auto., School of Electric and Information, Shanghai Jiaotong University, Shanghai 200030, P. R. China College of Information Science and Enginereing, Central South University, Changsha 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第2期84-91,共8页
Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selecti... Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA. 展开更多
关键词 CANONICAL Genetic algorithm Ergodic homogeneous Markov chain global convergence.
在线阅读 下载PDF
An adaptive genetic algorithm with diversity-guided mutation and its global convergence property 被引量:9
6
作者 李枚毅 蔡自兴 孙国荣 《Journal of Central South University of Technology》 EI 2004年第3期323-327,共5页
An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive gene... An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten. 展开更多
关键词 diversity-guided mutation adaptive genetic algorithm Markov chain global convergence
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:4
7
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
Dynamic Individual Selection and Crossover Boosted Forensic-based Investigation Algorithm for Global Optimization and Feature Selection 被引量:3
8
作者 Hanyu Hu Weifeng Shan +5 位作者 Jun Chen Lili Xing Ali Asghar Heidari Huiling Chen Xinxin He Maofa Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2416-2442,共27页
The advent of Big Data has rendered Machine Learning tasks more intricate as they frequently involve higher-dimensional data.Feature Selection(FS)methods can abate the complexity of the data and enhance the accuracy,g... The advent of Big Data has rendered Machine Learning tasks more intricate as they frequently involve higher-dimensional data.Feature Selection(FS)methods can abate the complexity of the data and enhance the accuracy,generalizability,and interpretability of models.Meta-heuristic algorithms are often utilized for FS tasks due to their low requirements and efficient performance.This paper introduces an augmented Forensic-Based Investigation algorithm(DCFBI)that incorporates a Dynamic Individual Selection(DIS)and crisscross(CC)mechanism to improve the pursuit phase of the FBI.Moreover,a binary version of DCFBI(BDCFBI)is applied to FS.Experiments conducted on IEEE CEC 2017 with other metaheuristics demonstrate that DCFBI surpasses them in search capability.The influence of different mechanisms on the original FBI is analyzed on benchmark functions,while its scalability is verified by comparing it with the original FBI on benchmarks with varied dimensions.BDCFBI is then applied to 18 real datasets from the UCI machine learning database and the Wieslaw dataset to select near-optimal features,which are then compared with six renowned binary metaheuristics.The results show that BDCFBI can be more competitive than similar methods and acquire a subset of features with superior classification accuracy. 展开更多
关键词 Feature selection Forensic-based investigation algorithm Crisscross mechanism global optimization Metaheuristic algorithms Bionic algorithm
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
9
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Finding Global Minima with a New Dynamical Evolutionary Algorithm 被引量:2
10
作者 Zou Xiu-fen Kang Li-shan +1 位作者 Li Yuan-xiang Chen Yu-ping 《Wuhan University Journal of Natural Sciences》 CAS 2002年第2期157-160,共4页
A new dynamical evolutionary algorithm (DEA) based on the theory of statistical mechanics is presented. This algorithm is very different from the traditional evolutionary algorithm and the two novel features are the u... A new dynamical evolutionary algorithm (DEA) based on the theory of statistical mechanics is presented. This algorithm is very different from the traditional evolutionary algorithm and the two novel features are the unique of selecting strategy and the determination of individuals that are selected to crossover and mutate. We use DEA to solve a lot of global optimization problems that are nonlinear, multimodal and multidimensional and obtain satisfactory results. 展开更多
关键词 dynamical evolutionary algorithm statistical mechanics global optimization
在线阅读 下载PDF
Multi-strategies Boosted Mutative Crow Search Algorithm for Global Tasks:Cases of Continuous and Discrete Optimization 被引量:2
11
作者 Weifeng Shan Hanyu Hu +4 位作者 Zhennao Cai Huiling Chen Haijun Liu Maofa Wang Yuntian Teng 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第6期1830-1849,共20页
Crow Search Algorithm(CSA)is a swarm-based single-objective optimizer proposed in recent years,which tried to inspire the behavior of crows that hide foods in different locations and retrieve them when needed.The orig... Crow Search Algorithm(CSA)is a swarm-based single-objective optimizer proposed in recent years,which tried to inspire the behavior of crows that hide foods in different locations and retrieve them when needed.The original version of the CSA has simple parameters and moderate performance.However,it often tends to converge slowly or get stuck in a locally optimal region due to a missed harmonizing strategy during the exploitation and exploration phases.Therefore,strategies of mutation and crisscross are combined into CSA(CCMSCSA)in this paper to improve the performance and provide an efficient optimizer for various optimization problems.To verify the superiority of CCMSCSA,a set of comparisons has been performed reasonably with some well-established metaheuristics and advanced metaheuristics on 15 benchmark functions.The experimental results expose and verify that the proposed CCMSCSA has meaningfully improved the convergence speed and the ability to jump out of the local optimum.In addition,the scalability of CCMSCSA is analyzed,and the algorithm is applied to several engineering problems in a constrained space and feature selection problems.Experimental results show that the scalability of CCMSCSA has been significantly improved and can find better solutions than its competitors when dealing with combinatorial optimization problems.The proposed CCMSCSA performs well in almost all experimental results.Therefore,we hope the researchers can see it as an effective method for solving constrained and unconstrained optimization problems. 展开更多
关键词 Crow search algorithm Feature selection global optimization Metaheuristic algorithms Engineering problems Bionic algorithm
在线阅读 下载PDF
Multi-swingby optimization of mission to Saturn using global optimization algorithms 被引量:5
12
作者 Kaijian Zhu Junfeng Li Hexi Baoyin School of Aerospace, Tsinghua University,100084 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期839-845,共7页
Based on the trajectory design of a mission to Saturn, this paper discusses four different trajectories in various swingby cases. We assume a single impulse to be applied in each case when the spacecraft approaches a ... Based on the trajectory design of a mission to Saturn, this paper discusses four different trajectories in various swingby cases. We assume a single impulse to be applied in each case when the spacecraft approaches a celestial body. Some optimal trajectories ofEJS, EMS, EVEJS and EVVEJS flying sequences are obtained using five global optimization algorithms: DE, PSO, DP, the hybrid algorithm PSODE and another hybrid algorithm, DPDE. DE is proved to be supe- rior to other non-hybrid algorithms in the trajectory optimi- zation problem. The hybrid algorithm of PSO and DE can improve the optimization performance of DE, which is vali- dated by the mission to Saturn with given swingby sequences. Finally, the optimization results of four different swingby sequences are compared with those of the ACT of ESA. 展开更多
关键词 Swingby trajectory . global optimization .Hybrid algorithm . Mission design
在线阅读 下载PDF
AN ANALYSIS ABOUT BEHAVIOR OF EVOLUTIONARY ALGORITHMS:A KIND OF THEORETICAL DESCRIPTION BASED ON GLOBAL RANDOM SEARCH METHODS 被引量:1
13
作者 Ding Lixin Kang Lishan +1 位作者 Chen Yupin Zhou Shaoquan 《Wuhan University Journal of Natural Sciences》 CAS 1998年第1期31-31,共1页
Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstructio... Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured. 展开更多
关键词 global random search evolutionary algorithms weak convergence genetic algorithms
在线阅读 下载PDF
ANew Theoretical Framework forAnalyzing Stochastic Global Optimization Algorithms 被引量:1
14
作者 SHI Ding hua PENG Jian ping (College of Sciences, Shanghai University) 《Advances in Manufacturing》 SCIE CAS 1999年第3期175-180,共6页
In this paper, we develop a new theoretical framework by means of the absorbing Markov process theory for analyzing some stochastic global optimization algorithms. Applying the framework to the pure random search, we ... In this paper, we develop a new theoretical framework by means of the absorbing Markov process theory for analyzing some stochastic global optimization algorithms. Applying the framework to the pure random search, we prove that the pure random search converges to the global minimum in probability and its time has geometry distribution. We also analyze the pure adaptive search by this framework and turn out that the pure adaptive search converges to the global minimum in probability and its time has Poisson distribution. 展开更多
关键词 global optimization stochastic global optimization algorithm random search absorbing Markov process
在线阅读 下载PDF
A New Stochastic Algorithm of Global Optimization ——Region's Walk and Contraction 被引量:2
15
作者 SHI Ding hua 1, PENG Jian ping 2 1.College of Sciences, Shanghai University, Shanghai 200436, China 2.Shanghai Municipal Commission of Science and Technology, Shanghai 200003, China 《Advances in Manufacturing》 2000年第1期1-3,共3页
This paper presents a new stochastic algorithm for box constrained global optimization problem. Bacause the level set of objective function is always not known, the authors designed a region containing the current mi... This paper presents a new stochastic algorithm for box constrained global optimization problem. Bacause the level set of objective function is always not known, the authors designed a region containing the current minimum point to replace it, and in order to fit the level set well, this region would be walking and contracting in the running process. Thus, the new algorithm is named as region's walk and contraction(RWC). Some numerical experiments for the RWC were conducted, which indicate good property of the algorithm. 展开更多
关键词 global optimization stochastic global optimization algorithm simulated annealing
在线阅读 下载PDF
Neural network and genetic algorithm based global path planning in a static environment 被引量:2
16
作者 杜歆 陈华华 顾伟康 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第6期549-554,共6页
Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network m... Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network model of environmental information in the workspace for a robot and used this model to establish the relationship between a collision avoidance path and the output of the model. Then the two-dimensional coding for the path via-points was converted to one-dimensional one and the fitness of both the collision avoidance path and the shortest distance are integrated into a fitness function. The simulation results showed that the proposed method is correct and effective. 展开更多
关键词 Mobile robot Neural network Genetic algorithm global path planning Fitness function
在线阅读 下载PDF
Modified evolutionary algorithm for global optimization 被引量:1
17
作者 郭崇慧 陆玉昌 唐焕文 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期1-6,共6页
A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorith... A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases. 展开更多
关键词 global optimization evolutionary algorithms chaos search
在线阅读 下载PDF
Simplified Group Search Optimizer Algorithm for Large Scale Global Optimization 被引量:1
18
作者 张雯雰 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期38-43,共6页
A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problem... A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization. 展开更多
关键词 evolutionary algorithms swarm intelli-gence group search optimizer(PSO) large scale global optimization function optimization
原文传递
Hybrid Krill Herd Algorithm with Vortex Search for Global Numerical Optimization 被引量:2
19
作者 YANG Jian WAN Zhongping PENG Zhenhua 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2020年第2期109-117,共9页
In order to solve the problem that the krill herd(KH)algorithm is premature due to the decrease of population diversity,a new hybrid vortex search KH(VSKH)algorithm has been developed to deal with the global optimizat... In order to solve the problem that the krill herd(KH)algorithm is premature due to the decrease of population diversity,a new hybrid vortex search KH(VSKH)algorithm has been developed to deal with the global optimization problem.The improvement is that a new hybrid vortex search(HVS)operator is added into the updating process of the krill for the purpose of dealing with optimization problems more efficiently.Using 20 benchmark functions for comparison experiments,the results show that the VSKH algorithm has higher accuracy. 展开更多
关键词 krill herd algorithm global optimization problem hybrid vortex search operator(HVS)
原文传递
Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots 被引量:26
20
作者 TAN Guan-Zheng HE Huan SLOMAN Aaron 《自动化学报》 EI CSCD 北大核心 2007年第3期279-285,共7页
为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的... 为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的路径,并且第三步正在利用 ACS 算法优化非最优的路径的地点以便产生全球性最佳的路径。建议方法是有效的并且能在即时路径被使用活动机器人计划的计算机模拟实验表演的结果。建议方法比与优秀人材模型一起基于基因算法计划方法的路径处于集中速度,答案变化,动态集中行为,和计算效率有更好的性能,这被验证了。 展开更多
关键词 蚁群系统 运算法则 自动化系统 计算机技术
在线阅读 下载PDF
上一页 1 2 149 下一页 到第
使用帮助 返回顶部