In the paper, the lime-barium and lime-zinc glazes used in Southern and Eastern Africa Mineral Center (SEAMIC) ceramic unit in Tanzania were investigated for the production of high temperature raw glazes in Cameroon. ...In the paper, the lime-barium and lime-zinc glazes used in Southern and Eastern Africa Mineral Center (SEAMIC) ceramic unit in Tanzania were investigated for the production of high temperature raw glazes in Cameroon. The base Seger formula used was 0.3KNaO, 0.3CaO, 0.4ZnO or BaO;xAl2O3 and ySiO2. Different Al2O3/SiO2 formula ratios for glossy and matt glazes were tested with raw materials from Cameroon and Tanzania. In the Cameroonian glazes, a local pegmatite (quartz, microcline, albite) with low coloured oxides replaced an albitic feldspar in the Tanzanian glazes. The other materials were kaolin, limestone, silica and barium carbonate or zinc oxide. The glazes were tested at Seger Cone 7 (1240℃) on stoneware slabs (made up of the same feldspathic glaze material: 18%, silica sand or quartz 27%, ball clay 40% and kaolin 15%) from both Tanzania and Cameroon materials. From results obtained, zinc oxide acted as a more vigorous flux than barium carbonate at cone 7, which is obvious in the glazes with pegmatite (with high quartz content). At a Seger formula of Al2O3/SiO21:10, transparent glazes were obtained. In these glazes the alumina content was lower and when increased to higher Seger ratios 1:4.7 - 8.7, the gloss was lowered to matt-luster due to fine crystal formation.展开更多
The ability of Omani local pottery earthenware to accept low- and medium-temperature fired glazes can face technical difficulties. The impurities included in the clays extracted from local fields, especially iron oxid...The ability of Omani local pottery earthenware to accept low- and medium-temperature fired glazes can face technical difficulties. The impurities included in the clays extracted from local fields, especially iron oxide, are a noted weakness that affects painting the local pottery with shiny, opaque, or matte glazes. Previously published research conducted by the researcher on Omani earthenware clays focused on finding a special transparent, shiny, and stable glazing recipe, but few studies have provided matte and opaque glazing recipes that are technically suitable for local Omani clays. By using laboratory-based experimental methodology, this research will investigate the possibility of using White Zircon Borax Frit (WZBF) to develop matte and opaque stable glazes that are suitable with local Omani pottery clay bodies. In the end of this experimental research, the purpose of this project is to develop applicable glazing recipes to be used for painting pots made by Omani clays.展开更多
In the study on Ca-Mg silicate crystalline glazes, we found some disequilibrated crystallization phenomena, such as non-crystallographic small angle forking and spheroidal growth, parasitism and wedging-form of crysta...In the study on Ca-Mg silicate crystalline glazes, we found some disequilibrated crystallization phenomena, such as non-crystallographic small angle forking and spheroidal growth, parasitism and wedging-form of crystals, dendritic growth, secondary nucleation, etc. Those phenomena possibly resulted from two factors: (1) partial temperature gradient, which is caused by heat asymmetry in the electrical resistance furnace, when crystals crystalize from silicate melt; (2) constitutional supercooling near the surface of crystals. The disparity of disequilibrated crystallization phenomena in different main crystalline phases causes various morphological features of the crystal aggregates. At the same time, disequilibrated crystallization causes great stress retained in the crystals, which results in cracks in glazes when the temperature drops. According to the results, the authors analyzed those phenomena and displayed correlative figures and data.展开更多
The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with B...The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with Bi/Si ratio in low-melting glass was investigated.In addition,the relationships between laser power,low-melting glass solder with different Bi/Si ratios and laser sealing shear strength were revealed.The results show that a decrease in the Bi/Si ratio can cause a contraction of the glass network of the low-melting glass,leading to an increase of its characteristic temperature and a decrease of its coefficient of thermal expansion.During laser sealing,the copper ions in the low-melting glass play an endothermic role.A change in the Bi/Si ratio will affect the valence state transition of the copper ions in the low-melting glass.The absorbance of the low-melting glass does not follow the expected correlation with the Bi/Si ratio,but shows a linear correlation with the content of divalent copper ions.The greater the concentration of divalent copper ions,the greater the absorbance of the low-melting glass,and the lower the laser power required for laser sealing.The shear strength of the low melting glass solder after laser sealing was tested,and it was found that the maximum shear strength of Z1 glass sample was the highest up to 2.67 MPa.展开更多
Wind turbine blades in cold regions are susceptible to icing due to meteorological conditions,significantly affecting the turbine's energy capture efficiency and operational safety.Precise calculation of droplet c...Wind turbine blades in cold regions are susceptible to icing due to meteorological conditions,significantly affecting the turbine's energy capture efficiency and operational safety.Precise calculation of droplet collection efficiency(DCE)is essential for accurate icing prediction.This study examines existing methods for calculating DCE and identifies limitations during glaze ice formation.An enhanced method based on the Euler Wall Film(EWF)model is introduced to address these limitations,incorporating splashing and rebound phenomena during glaze ice formation on wind turbine blades.The method's reliability is validated using data from the classic symmetric airfoil,NACA0012.Through the control variable method,this research examines DCE variations under different incoming velocities,medium volume droplet diameters(MVDs),and temperatures.The study also analyzes the distinctions between the improved method and the existing Eulerian method.Results indicate that both impact range and maximum DCE increase with higher incoming velocity and MVD,while temperature exhibits minimal influence on DCE.Variations between the calculation methods reveal differences in water droplet splashing intensity,primarily influenced by droplet kinetic energy and liquid film thickness.The splashing phenomenon gradually decreases as incoming velocity and MVD increase.展开更多
With the support of the Origin Exploring of Chinese Civilization Projects (II) and National Natural Science Foundation of China,the close relationship among "pottery coat","kiln sweat" and Chinese ...With the support of the Origin Exploring of Chinese Civilization Projects (II) and National Natural Science Foundation of China,the close relationship among "pottery coat","kiln sweat" and Chinese proto-porcelain glaze were studied,the characteristics and the key foundation of the origin of porcelain glaze were also discussed based on the relevant research results by Shanghai Institute of Ceramics,Chinese Academy of Sciences and Jingdezhen Ceramics Institute.展开更多
In the preparation of magnesium by Pidgeon process,the phenomenon slag pellets sticking on the wall of reduction pot always appear,and the glaze sticking on the inner wall of the reduction pot is difficult to remove.T...In the preparation of magnesium by Pidgeon process,the phenomenon slag pellets sticking on the wall of reduction pot always appear,and the glaze sticking on the inner wall of the reduction pot is difficult to remove.The mechanism of this phenomenon is studied in this work by X-ray fluorescence spectrometer(XRF)measurement,electron probe microanalyzer scanning(EPMA)analysis,differential scanning calorimetry(DSC)analysis,and thermodynamic calculations.The main components of the glaze are MgO,Ca_(12)Al_(14)F_(2)O_(32),CaF_(2),CaO,and a small amount of Ca_(4)Si_(2)O_(7)F_(2).The solid-liquid transition temperature of Ca_(12)Al_(14)F_(2)O_(32)and CaF_(2)is close to the production temperature of Pidgeon process,which leads to the bonding between the slag pellets and the pot wall.The loss of CaF_(2)in glaze layer will reduce the total amount of liquid phase and increase the temperature at which Ca_(12)Al_(14)F_(2)O_(32)is completely transformed into liquid phase,which causes glaze layer sticking on the inner wall of the reduction pot.展开更多
A copper-red and silver-white metallic glaze of R_(2)O-RO-Al_(2)O_(3)-SiO_(2)-P_(2)O_(5)system was synthesized by adjusting the firing temperature and glaze components.The coloration mechanism of the metallic glaze wa...A copper-red and silver-white metallic glaze of R_(2)O-RO-Al_(2)O_(3)-SiO_(2)-P_(2)O_(5)system was synthesized by adjusting the firing temperature and glaze components.The coloration mechanism of the metallic glaze was revealed via investigation of the microstructure of the glaze.Our research reveals that the metallic glaze with different colors is mainly due to the amount of Fe_(2)O_(3).The metallic glaze shows a silver-white luster due to a structural color ofα-Fe_(2)O_(3)crystals with a good orientation when the sample contains 0.0939 mol of Fe_(2)O_(3),maintaining temperatures at 1150℃for 0.5 h.The metallic glaze is copper-red which is dominated by the coupling of chemical and structural color ofα-Fe_(2)O_(3)crystals when the sample contains 0.0783 mol of Fe_(2)O_(3).After testing the amount of SiO_(2),we find that 4.0499 mol is the optimal amount to form the ceramic network,and 0.27 mol AlPO_(4)is the best amount to promote phase separation.展开更多
As a kind of rare materials,nano-silver has broad application prospects in the fields of catalysis,medical treatment,new energy and so on.However,there are few reports on the systematic research of nano-silver in cera...As a kind of rare materials,nano-silver has broad application prospects in the fields of catalysis,medical treatment,new energy and so on.However,there are few reports on the systematic research of nano-silver in ceramic glazes.In this work,different color ceramic glazes were produced by tuning the nano-silver content and optimizing the firing process.The crystalline phase composition,micro-morphology and elemental distribution of fired glazes were analyzed and discussed in depth.The elemental composition and distribution of the samples were studied.The surface of the glazes with varying Ag contents fired under the reducing atmosphere exhibited blue-white.And the blue color is attributable to Rayleigh scattering that may arise because the phase-separation structures existed in glazes.Interestingly,the color of the ceramic glazes with varying Ag contents changed to golden-yellow when the ceramic glazes were fired under the air atmosphere.Golden-yellow color of the samples fired under the air atmosphere is mainly attributable to the silver nanoparticles,though Ag^(+) may be existed in the glazes.展开更多
Glazes on ceramics provide a durable finish as well as a protective layer, impervious, sanitary, and generally easily cleaned surface, have the advantage of having a very wide spectrum of colors. As a result, color ha...Glazes on ceramics provide a durable finish as well as a protective layer, impervious, sanitary, and generally easily cleaned surface, have the advantage of having a very wide spectrum of colors. As a result, color has a lot of variability, luminosity and permanence. This method of coating is suitable for products that are not too big a smooth and can be done quickly such as plating of coffee mugs, cups or bowls. Putting the product in the enameled tank must not be soaked for too long as it will thicken the coating. When the coating is dry it will slip off easily. Therefore, this research is to provide product dipping. Good and consistent plating at all times and then industrial robots are used to help in plating or dipping. The robot can control the work quickly. According to the position and speed control can reduce the working time in the further.展开更多
Offshore wind energy resources are operational in cold regions,while offshore wind turbines will face the threat of icing.Therefore,it is necessary to study icing of offshore wind turbines under different icing condit...Offshore wind energy resources are operational in cold regions,while offshore wind turbines will face the threat of icing.Therefore,it is necessary to study icing of offshore wind turbines under different icing conditions.In this study,icing sensitivity of offshore wind turbine blades are performed using a combination of FLUENT and FENSAP-ICE software,and the effects of liquid water content(LWC),medium volume diameter(MVD),wind speed and air temperature on blade icing shape are analyzed by two types of ice,namely rime ice and glaze ice.The results show that the increase of LWC and MVD will increase the amount of ice that forms on the blade surface for either glaze ice or rime ice,and an increase of MVD will expand the adhesion surface between ice and blade.Before reaching the rated wind speed of 11.4 m/s,it does not directly affect the icing shape.However,after reaching the rated wind speed,the attack angle of the incoming flow decreases obviously,and the amount of ice increases markedly.When the ambient air temperature meets the icing conditions of glaze ice(i.e.,−5℃ to 0℃),the lower the temperature,the more glaze ice freezes,whereas air temperature has no impact on the icing of rime ice.Compared with onshore wind turbines,offshore wind turbines might face extreme meteorological conditions,and the wind speed has no impact on the amount of ice that forms on the blade surface for most wind speeds.展开更多
The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on ro- tor blades on the vortex structures in the wake of a hori- zontal axis wind turbine by using the stereoscop...The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on ro- tor blades on the vortex structures in the wake of a hori- zontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the ex- periments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic en- ergy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the pres- ence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.展开更多
Self-lubricating composites(SLCs)are widely used in the fields of aerospace and marine,but the conventional NiCr matrix SLCs with sulfide as solid lubricant often suffer from low wear resistance at high temperatures.I...Self-lubricating composites(SLCs)are widely used in the fields of aerospace and marine,but the conventional NiCr matrix SLCs with sulfide as solid lubricant often suffer from low wear resistance at high temperatures.In view of its high affinity with oxygen and also the high oxidation rate,appropriate amount of nano Ti was added to NiCr-WS_(2)composites prepared by spark plasma sintering(SPS)to adjust the oxidation behavior and surface texture.When exposed to high temperature,Ti was preferentially oxidized in comparison to Ni and Cr,resulting in abundant TiO_(2)protrusions and microdimples on the surface,i.e.in situ surface texturing.Besides,TiO_(2)was of high chemical activity and readily to react with other oxide debris during high temperature sliding process to form compounds of NiTiO_(3)and CrTi_(2)O_(5).The high chemical activity of oxide debris that was conducive to sintering,combining with the special surface texture that stores as many wear debris as possible,promoted the rapid formation of a protective glaze layer on the sliding surface.The NiCr-WS_(2)-Ti composite exhibited low friction coefficient but high wear resistance at elevated temperatures.Especially at 800℃,it presented a wear rate of as low as(2.1±0.3)×10^(-5)mm^3N-1m^(-1),accounting for only 2.7%of that of NiCr-WS_(2)composite.展开更多
Drying shrinkage of thermal insulation mortar with glazed hollow beads was measured by a vertical length comparator, and the influences of fly ash with different contents(0, 18%, 36%, and 54% were used) on the long-...Drying shrinkage of thermal insulation mortar with glazed hollow beads was measured by a vertical length comparator, and the influences of fly ash with different contents(0, 18%, 36%, and 54% were used) on the long-term drying shrinkage were discussed. The mass loss was measured by the weighting method and the pore structure was characterized using three different methods, including the light microscopy, the mercury intrusion porosimetry(MIP), and the nitrogen adsorption/desorption(NAD) experiments, and the correlations among them were researched. The results show that drying shrinkage process of thermal insulation mortar includes three steps with increasing curing time: the acceleration period(before 7 d), the deceleration period(7-365 d), and the metastable period(after 365 d). Drying shrinkage in the first stage(7 d before) increases quickly owing to the fast water loss, and its development in the last two stages is attributed to the increment of the pore volume of mortar with the radius below 50 nm, especially the increment of the pore volume fraction of the pore radius within the size range between 7.3 nm and 12.3 nm. There is no change in the drying shrinkage development trend of mortar with fly ash addition, and three steps in the service life, but fly ash addition in the mortar restrains its value. There is a linear relationship between the drying shrinkage and fly ash content, which means that drying shrinkage reduces with fly ash addition.展开更多
CO2 continuous wave laser beam had been applied to the laser glazing of plasma sprayed nanostructure zirconia thermal barrier coatings. The effects of laser glazing processing parameters on the surface figuration and ...CO2 continuous wave laser beam had been applied to the laser glazing of plasma sprayed nanostructure zirconia thermal barrier coatings. The effects of laser glazing processing parameters on the surface figuration and microstructure change had been carried out, the microstructure and phase composition of the coatings had been evaluated by the scanning electron microscope ( SEM) and the X-ray diffraction ( XRD ). SEM observation indicates that the microstructure of the as-glazed coating could be altered from singlecolumnar structure to a combination of the columnar grain and fine equiaxed grain with the different laser glazing conditions. XRD analysis illustrates that the predominance phase of the us-glazed coating is the metastable tetragonal phase, and the glazed coating with the single columnar structure has shown the clear orientation in (220) and (400) peaks while the other coatings do not show that.展开更多
Shaking table tests and theoretical analysis were conducted to study the dynamic performance of cable net facade with consideration of glass panels under earthquake. Firstly,the dynamic response of cable net faade u...Shaking table tests and theoretical analysis were conducted to study the dynamic performance of cable net facade with consideration of glass panels under earthquake. Firstly,the dynamic response of cable net faade under earthquake was investigated with shaking table test. Then the working mechanism of glass panels in coordination with cable net was proposed. Accordingly,a numerical simulation model of glass panel's working in coordination with cable net was built for the dynamic analysis.And then the seismic response was analyzed with this model theoretically. The study indicates that the seismic response of the cable net with glass panels on most occasions is mainly decided by the symmetric modes,and the first vibration mode is dominant. The damping of cable net facade is mainly decided by glass panels. And it is very good for cable net faade to restrain its dynamic response under earthquake.展开更多
Under the condition of thermal anti-icing,the liquid water on the leading edge of the airfoil that would flow to the downstream non-protective zone will produce ridge ice,thus endangering flight safety.Based on the ex...Under the condition of thermal anti-icing,the liquid water on the leading edge of the airfoil that would flow to the downstream non-protective zone will produce ridge ice,thus endangering flight safety.Based on the existing three-dimensional(3 D)icing model which considers the water film flow on the ice layer,an icing model with thermal boundary condition is introduced.With the boundary conditions of none anti-icing and thermal anti-icing,glaze ice accretion and ridge ice accretion are simulated on a simplified airfoil of unmanned aerial vehicle(UAV),and then the lift coefficient and drag coefficient are calculated and compared with the smooth airfoil under the same conditions.The results show that the lift-drag ratio obviously decreases after glaze ice occurred on the leading edge under the condition of none anti-icing;and that after setting the condition of anti-icing heat flux in the impingement area,the glaze ice on the leading edge becomes thinner and the ridge ice occurs in the non-protective zone,so the airfoil with this icing characteristic gets a lower lift-drag ratio.展开更多
In this study,based on the established heat transfer and mechanical stress models,thermal stress distribution of glazing unit filled with paraffin was studied for various temperature differences between indoor and out...In this study,based on the established heat transfer and mechanical stress models,thermal stress distribution of glazing unit filled with paraffin was studied for various temperature differences between indoor and outdoor conditions.The strain produced on the surface of glazing unit filled with paraffin varies greatly in the outdoor temperature range of-30℃-40 ℃.Furthermore,phase change material(PCM) layer between the glass panes significantly affects the strain values at different temperatures,which can respectively reach up to about 250×10^(-6) and down to-300×10^(-6) for tensile and compressive strains once the paraffin is in liquid state.Additionally,impacts of boundary conditions on the strain values are more pronounced within the distance of 0.01 m from the edges of the glazing window.The presented model and outcomes can be used as a guide to simulate thermal stress in glazing units filled with paraffin.展开更多
A lead-free base glaze suitable for pearlescent pigments was prepared by a low-temperature solid-phase reaction with alkali waste.Tests were performed to evaluate the effects of the sintering conditions and alkali was...A lead-free base glaze suitable for pearlescent pigments was prepared by a low-temperature solid-phase reaction with alkali waste.Tests were performed to evaluate the effects of the sintering conditions and alkali waste composition on the prepared base glaze and pearlescent glaze.The experimental results show that partially replacing SiO_(2) with B_(2)O_(3) effectively reduced the sintering temperature and time to form a glass network,but the network structure becomes disconnected as the B_(2)O_(3) content increases.An amorphous base glaze was obtained when soda ash was replaced with a small amount of alkali waste,but increasing the addition of NaCl further was adverse to base glaze formation by resulting in crystallization of the base glaze and a decrease in the bridging oxygen content.The pearlescent pigment was thermally stable in the glaze at 750℃,while higher temperatures caused the crystalline phase of NaAlSiO_(4) to appear and adhere to the surface of pigment granules,which degraded the pearlescent effect of the glaze.展开更多
Infrared radiant powder was synthesized by conventional ceramic processing techniques by using Fe2 O3, MnO2, CuO, Co2 O3 and kaolin as raw materials. A novel infrared radant glaze was developed by introducing the infr...Infrared radiant powder was synthesized by conventional ceramic processing techniques by using Fe2 O3, MnO2, CuO, Co2 O3 and kaolin as raw materials. A novel infrared radant glaze was developed by introducing the infrared radiant powder into glazing as a functional additive. Infrared radiant characteristics of the powder and the glaze were investigated. The optimum content of infrared radiant powder in glazing was ascertained to be 5% . The infrared radiant glaze exhibits significant antibacterial and antifungal Junctions due to the thermal effect of infrared radiation. Antibacterial percentages of the glaze reach 91% - 100% when Escherichia coli, Staphylococcus aureus and Bacillus subtilis are used as model bacterium respectively, while antifungal percentage of the glaze exceeds 95% when Penicillum citrinum is used as model fungus.展开更多
文摘In the paper, the lime-barium and lime-zinc glazes used in Southern and Eastern Africa Mineral Center (SEAMIC) ceramic unit in Tanzania were investigated for the production of high temperature raw glazes in Cameroon. The base Seger formula used was 0.3KNaO, 0.3CaO, 0.4ZnO or BaO;xAl2O3 and ySiO2. Different Al2O3/SiO2 formula ratios for glossy and matt glazes were tested with raw materials from Cameroon and Tanzania. In the Cameroonian glazes, a local pegmatite (quartz, microcline, albite) with low coloured oxides replaced an albitic feldspar in the Tanzanian glazes. The other materials were kaolin, limestone, silica and barium carbonate or zinc oxide. The glazes were tested at Seger Cone 7 (1240℃) on stoneware slabs (made up of the same feldspathic glaze material: 18%, silica sand or quartz 27%, ball clay 40% and kaolin 15%) from both Tanzania and Cameroon materials. From results obtained, zinc oxide acted as a more vigorous flux than barium carbonate at cone 7, which is obvious in the glazes with pegmatite (with high quartz content). At a Seger formula of Al2O3/SiO21:10, transparent glazes were obtained. In these glazes the alumina content was lower and when increased to higher Seger ratios 1:4.7 - 8.7, the gloss was lowered to matt-luster due to fine crystal formation.
文摘The ability of Omani local pottery earthenware to accept low- and medium-temperature fired glazes can face technical difficulties. The impurities included in the clays extracted from local fields, especially iron oxide, are a noted weakness that affects painting the local pottery with shiny, opaque, or matte glazes. Previously published research conducted by the researcher on Omani earthenware clays focused on finding a special transparent, shiny, and stable glazing recipe, but few studies have provided matte and opaque glazing recipes that are technically suitable for local Omani clays. By using laboratory-based experimental methodology, this research will investigate the possibility of using White Zircon Borax Frit (WZBF) to develop matte and opaque stable glazes that are suitable with local Omani pottery clay bodies. In the end of this experimental research, the purpose of this project is to develop applicable glazing recipes to be used for painting pots made by Omani clays.
基金Supported by the Natural Science Foundation of Fujian Province(No.D0 2 10 0 12 )
文摘In the study on Ca-Mg silicate crystalline glazes, we found some disequilibrated crystallization phenomena, such as non-crystallographic small angle forking and spheroidal growth, parasitism and wedging-form of crystals, dendritic growth, secondary nucleation, etc. Those phenomena possibly resulted from two factors: (1) partial temperature gradient, which is caused by heat asymmetry in the electrical resistance furnace, when crystals crystalize from silicate melt; (2) constitutional supercooling near the surface of crystals. The disparity of disequilibrated crystallization phenomena in different main crystalline phases causes various morphological features of the crystal aggregates. At the same time, disequilibrated crystallization causes great stress retained in the crystals, which results in cracks in glazes when the temperature drops. According to the results, the authors analyzed those phenomena and displayed correlative figures and data.
基金Funded by the National Natural Science Foundation of China(No.52472012)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(No.2022KF11)the Research and Development of Glass Powder for Laser Sealing and Its Sealing Technology(No.K24556)。
文摘The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with Bi/Si ratio in low-melting glass was investigated.In addition,the relationships between laser power,low-melting glass solder with different Bi/Si ratios and laser sealing shear strength were revealed.The results show that a decrease in the Bi/Si ratio can cause a contraction of the glass network of the low-melting glass,leading to an increase of its characteristic temperature and a decrease of its coefficient of thermal expansion.During laser sealing,the copper ions in the low-melting glass play an endothermic role.A change in the Bi/Si ratio will affect the valence state transition of the copper ions in the low-melting glass.The absorbance of the low-melting glass does not follow the expected correlation with the Bi/Si ratio,but shows a linear correlation with the content of divalent copper ions.The greater the concentration of divalent copper ions,the greater the absorbance of the low-melting glass,and the lower the laser power required for laser sealing.The shear strength of the low melting glass solder after laser sealing was tested,and it was found that the maximum shear strength of Z1 glass sample was the highest up to 2.67 MPa.
基金supported by the National Natural Science Foundation of China(Grant No.51879125)。
文摘Wind turbine blades in cold regions are susceptible to icing due to meteorological conditions,significantly affecting the turbine's energy capture efficiency and operational safety.Precise calculation of droplet collection efficiency(DCE)is essential for accurate icing prediction.This study examines existing methods for calculating DCE and identifies limitations during glaze ice formation.An enhanced method based on the Euler Wall Film(EWF)model is introduced to address these limitations,incorporating splashing and rebound phenomena during glaze ice formation on wind turbine blades.The method's reliability is validated using data from the classic symmetric airfoil,NACA0012.Through the control variable method,this research examines DCE variations under different incoming velocities,medium volume droplet diameters(MVDs),and temperatures.The study also analyzes the distinctions between the improved method and the existing Eulerian method.Results indicate that both impact range and maximum DCE increase with higher incoming velocity and MVD,while temperature exhibits minimal influence on DCE.Variations between the calculation methods reveal differences in water droplet splashing intensity,primarily influenced by droplet kinetic energy and liquid film thickness.The splashing phenomenon gradually decreases as incoming velocity and MVD increase.
基金supported by the National Natural Science Foundation of China (Grant Nos.50762006,50962008)the Jiangxi Provincical Department of Eduction (Grant No.LS0908)the Natural Science Foundation of Jiangxi Province (Grant No.2009GQW0014)
文摘With the support of the Origin Exploring of Chinese Civilization Projects (II) and National Natural Science Foundation of China,the close relationship among "pottery coat","kiln sweat" and Chinese proto-porcelain glaze were studied,the characteristics and the key foundation of the origin of porcelain glaze were also discussed based on the relevant research results by Shanghai Institute of Ceramics,Chinese Academy of Sciences and Jingdezhen Ceramics Institute.
基金funded by the China Postdoctoral Sci-ence Foundation(Grant No.2020M682337)Certificate of Postdoctoral Research Grant in Henan Province(Grant No.201903011)National Key Research and Development Program of China(Grant Nos.2016YFB0301001 and 2016YFB0301101).
文摘In the preparation of magnesium by Pidgeon process,the phenomenon slag pellets sticking on the wall of reduction pot always appear,and the glaze sticking on the inner wall of the reduction pot is difficult to remove.The mechanism of this phenomenon is studied in this work by X-ray fluorescence spectrometer(XRF)measurement,electron probe microanalyzer scanning(EPMA)analysis,differential scanning calorimetry(DSC)analysis,and thermodynamic calculations.The main components of the glaze are MgO,Ca_(12)Al_(14)F_(2)O_(32),CaF_(2),CaO,and a small amount of Ca_(4)Si_(2)O_(7)F_(2).The solid-liquid transition temperature of Ca_(12)Al_(14)F_(2)O_(32)and CaF_(2)is close to the production temperature of Pidgeon process,which leads to the bonding between the slag pellets and the pot wall.The loss of CaF_(2)in glaze layer will reduce the total amount of liquid phase and increase the temperature at which Ca_(12)Al_(14)F_(2)O_(32)is completely transformed into liquid phase,which causes glaze layer sticking on the inner wall of the reduction pot.
基金Funded by the National Natural Science Foundation of China(No.52202231)the College Students Innovation and Entrepreneurship Training Program of Hubei University of Technology(No.202310500039)。
文摘A copper-red and silver-white metallic glaze of R_(2)O-RO-Al_(2)O_(3)-SiO_(2)-P_(2)O_(5)system was synthesized by adjusting the firing temperature and glaze components.The coloration mechanism of the metallic glaze was revealed via investigation of the microstructure of the glaze.Our research reveals that the metallic glaze with different colors is mainly due to the amount of Fe_(2)O_(3).The metallic glaze shows a silver-white luster due to a structural color ofα-Fe_(2)O_(3)crystals with a good orientation when the sample contains 0.0939 mol of Fe_(2)O_(3),maintaining temperatures at 1150℃for 0.5 h.The metallic glaze is copper-red which is dominated by the coupling of chemical and structural color ofα-Fe_(2)O_(3)crystals when the sample contains 0.0783 mol of Fe_(2)O_(3).After testing the amount of SiO_(2),we find that 4.0499 mol is the optimal amount to form the ceramic network,and 0.27 mol AlPO_(4)is the best amount to promote phase separation.
基金financially supported by the National Natural Science Foundation of China(Grant No.52072327)Zhongyuan Thousand Talents(Zhongyuan Scholars)Program of Henan Province(No.202101510004)+2 种基金the Scientific and Technological Projects of Henan Province(No.202102210022)the Undergraduate Innovation and Entrepreneurship Project of Henan Province(No.202010480011)Henan Province Water Conservancy Technology Project(No.GG201922)。
文摘As a kind of rare materials,nano-silver has broad application prospects in the fields of catalysis,medical treatment,new energy and so on.However,there are few reports on the systematic research of nano-silver in ceramic glazes.In this work,different color ceramic glazes were produced by tuning the nano-silver content and optimizing the firing process.The crystalline phase composition,micro-morphology and elemental distribution of fired glazes were analyzed and discussed in depth.The elemental composition and distribution of the samples were studied.The surface of the glazes with varying Ag contents fired under the reducing atmosphere exhibited blue-white.And the blue color is attributable to Rayleigh scattering that may arise because the phase-separation structures existed in glazes.Interestingly,the color of the ceramic glazes with varying Ag contents changed to golden-yellow when the ceramic glazes were fired under the air atmosphere.Golden-yellow color of the samples fired under the air atmosphere is mainly attributable to the silver nanoparticles,though Ag^(+) may be existed in the glazes.
文摘Glazes on ceramics provide a durable finish as well as a protective layer, impervious, sanitary, and generally easily cleaned surface, have the advantage of having a very wide spectrum of colors. As a result, color has a lot of variability, luminosity and permanence. This method of coating is suitable for products that are not too big a smooth and can be done quickly such as plating of coffee mugs, cups or bowls. Putting the product in the enameled tank must not be soaked for too long as it will thicken the coating. When the coating is dry it will slip off easily. Therefore, this research is to provide product dipping. Good and consistent plating at all times and then industrial robots are used to help in plating or dipping. The robot can control the work quickly. According to the position and speed control can reduce the working time in the further.
基金financially supported by the National Natural Science Foundation of China(Grant No.51879125)the Jiangsu Provincial Higher Education Natural Science Research Major Project(Grant No.18KJA580003)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20211342)the Jiangsu Province“Six Talents Peak”High-level Talents Support Project(Grant No.2018-KTHY-033).
文摘Offshore wind energy resources are operational in cold regions,while offshore wind turbines will face the threat of icing.Therefore,it is necessary to study icing of offshore wind turbines under different icing conditions.In this study,icing sensitivity of offshore wind turbine blades are performed using a combination of FLUENT and FENSAP-ICE software,and the effects of liquid water content(LWC),medium volume diameter(MVD),wind speed and air temperature on blade icing shape are analyzed by two types of ice,namely rime ice and glaze ice.The results show that the increase of LWC and MVD will increase the amount of ice that forms on the blade surface for either glaze ice or rime ice,and an increase of MVD will expand the adhesion surface between ice and blade.Before reaching the rated wind speed of 11.4 m/s,it does not directly affect the icing shape.However,after reaching the rated wind speed,the attack angle of the incoming flow decreases obviously,and the amount of ice increases markedly.When the ambient air temperature meets the icing conditions of glaze ice(i.e.,−5℃ to 0℃),the lower the temperature,the more glaze ice freezes,whereas air temperature has no impact on the icing of rime ice.Compared with onshore wind turbines,offshore wind turbines might face extreme meteorological conditions,and the wind speed has no impact on the amount of ice that forms on the blade surface for most wind speeds.
基金supported by Science and Technology Commission of Shanghai Municipality(15ZR1442700)
文摘The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on ro- tor blades on the vortex structures in the wake of a hori- zontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the ex- periments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic en- ergy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the pres- ence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.
基金financially supported by the National Natural Science Foundation of China(No.51871051)。
文摘Self-lubricating composites(SLCs)are widely used in the fields of aerospace and marine,but the conventional NiCr matrix SLCs with sulfide as solid lubricant often suffer from low wear resistance at high temperatures.In view of its high affinity with oxygen and also the high oxidation rate,appropriate amount of nano Ti was added to NiCr-WS_(2)composites prepared by spark plasma sintering(SPS)to adjust the oxidation behavior and surface texture.When exposed to high temperature,Ti was preferentially oxidized in comparison to Ni and Cr,resulting in abundant TiO_(2)protrusions and microdimples on the surface,i.e.in situ surface texturing.Besides,TiO_(2)was of high chemical activity and readily to react with other oxide debris during high temperature sliding process to form compounds of NiTiO_(3)and CrTi_(2)O_(5).The high chemical activity of oxide debris that was conducive to sintering,combining with the special surface texture that stores as many wear debris as possible,promoted the rapid formation of a protective glaze layer on the sliding surface.The NiCr-WS_(2)-Ti composite exhibited low friction coefficient but high wear resistance at elevated temperatures.Especially at 800℃,it presented a wear rate of as low as(2.1±0.3)×10^(-5)mm^3N-1m^(-1),accounting for only 2.7%of that of NiCr-WS_(2)composite.
基金Funded by the National Key Technology R&D Program of China during the 12th Five-year Plan(No.2012BAJ20B02)
文摘Drying shrinkage of thermal insulation mortar with glazed hollow beads was measured by a vertical length comparator, and the influences of fly ash with different contents(0, 18%, 36%, and 54% were used) on the long-term drying shrinkage were discussed. The mass loss was measured by the weighting method and the pore structure was characterized using three different methods, including the light microscopy, the mercury intrusion porosimetry(MIP), and the nitrogen adsorption/desorption(NAD) experiments, and the correlations among them were researched. The results show that drying shrinkage process of thermal insulation mortar includes three steps with increasing curing time: the acceleration period(before 7 d), the deceleration period(7-365 d), and the metastable period(after 365 d). Drying shrinkage in the first stage(7 d before) increases quickly owing to the fast water loss, and its development in the last two stages is attributed to the increment of the pore volume of mortar with the radius below 50 nm, especially the increment of the pore volume fraction of the pore radius within the size range between 7.3 nm and 12.3 nm. There is no change in the drying shrinkage development trend of mortar with fly ash addition, and three steps in the service life, but fly ash addition in the mortar restrains its value. There is a linear relationship between the drying shrinkage and fly ash content, which means that drying shrinkage reduces with fly ash addition.
文摘CO2 continuous wave laser beam had been applied to the laser glazing of plasma sprayed nanostructure zirconia thermal barrier coatings. The effects of laser glazing processing parameters on the surface figuration and microstructure change had been carried out, the microstructure and phase composition of the coatings had been evaluated by the scanning electron microscope ( SEM) and the X-ray diffraction ( XRD ). SEM observation indicates that the microstructure of the as-glazed coating could be altered from singlecolumnar structure to a combination of the columnar grain and fine equiaxed grain with the different laser glazing conditions. XRD analysis illustrates that the predominance phase of the us-glazed coating is the metastable tetragonal phase, and the glazed coating with the single columnar structure has shown the clear orientation in (220) and (400) peaks while the other coatings do not show that.
基金Sponsored by National "Eleventh Five-Year" Technological Supporting Plan (Grant No.2006BAJ02A05)National Natural Science Foundation of China(Grant No.50908044)+1 种基金China Postdoctoral Foundation (Grant No.20070420164)Shenzhen Technical Foundation (Grant No.20080624_1554)
文摘Shaking table tests and theoretical analysis were conducted to study the dynamic performance of cable net facade with consideration of glass panels under earthquake. Firstly,the dynamic response of cable net faade under earthquake was investigated with shaking table test. Then the working mechanism of glass panels in coordination with cable net was proposed. Accordingly,a numerical simulation model of glass panel's working in coordination with cable net was built for the dynamic analysis.And then the seismic response was analyzed with this model theoretically. The study indicates that the seismic response of the cable net with glass panels on most occasions is mainly decided by the symmetric modes,and the first vibration mode is dominant. The damping of cable net facade is mainly decided by glass panels. And it is very good for cable net faade to restrain its dynamic response under earthquake.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20150740)the National Natural Science Foundation of China(No.51506084)
文摘Under the condition of thermal anti-icing,the liquid water on the leading edge of the airfoil that would flow to the downstream non-protective zone will produce ridge ice,thus endangering flight safety.Based on the existing three-dimensional(3 D)icing model which considers the water film flow on the ice layer,an icing model with thermal boundary condition is introduced.With the boundary conditions of none anti-icing and thermal anti-icing,glaze ice accretion and ridge ice accretion are simulated on a simplified airfoil of unmanned aerial vehicle(UAV),and then the lift coefficient and drag coefficient are calculated and compared with the smooth airfoil under the same conditions.The results show that the lift-drag ratio obviously decreases after glaze ice occurred on the leading edge under the condition of none anti-icing;and that after setting the condition of anti-icing heat flux in the impingement area,the glaze ice on the leading edge becomes thinner and the ridge ice occurs in the non-protective zone,so the airfoil with this icing characteristic gets a lower lift-drag ratio.
基金Project(52078110) supported by the National Natural Science Foundation of ChinaProject(2018KYQD15) supported by Beibu Gulf Universityt,China。
文摘In this study,based on the established heat transfer and mechanical stress models,thermal stress distribution of glazing unit filled with paraffin was studied for various temperature differences between indoor and outdoor conditions.The strain produced on the surface of glazing unit filled with paraffin varies greatly in the outdoor temperature range of-30℃-40 ℃.Furthermore,phase change material(PCM) layer between the glass panes significantly affects the strain values at different temperatures,which can respectively reach up to about 250×10^(-6) and down to-300×10^(-6) for tensile and compressive strains once the paraffin is in liquid state.Additionally,impacts of boundary conditions on the strain values are more pronounced within the distance of 0.01 m from the edges of the glazing window.The presented model and outcomes can be used as a guide to simulate thermal stress in glazing units filled with paraffin.
基金by the National Natural Science Foundation of China(No.51402097)the College Students Innovation and Entrepreneurship Training Program of Hubei University of Technology(No.202010500045)。
文摘A lead-free base glaze suitable for pearlescent pigments was prepared by a low-temperature solid-phase reaction with alkali waste.Tests were performed to evaluate the effects of the sintering conditions and alkali waste composition on the prepared base glaze and pearlescent glaze.The experimental results show that partially replacing SiO_(2) with B_(2)O_(3) effectively reduced the sintering temperature and time to form a glass network,but the network structure becomes disconnected as the B_(2)O_(3) content increases.An amorphous base glaze was obtained when soda ash was replaced with a small amount of alkali waste,but increasing the addition of NaCl further was adverse to base glaze formation by resulting in crystallization of the base glaze and a decrease in the bridging oxygen content.The pearlescent pigment was thermally stable in the glaze at 750℃,while higher temperatures caused the crystalline phase of NaAlSiO_(4) to appear and adhere to the surface of pigment granules,which degraded the pearlescent effect of the glaze.
基金Funded by the Foundation for Excellent Youth of Wuhan (No. 995004088G) and key Project of New Products of Hubei Province
文摘Infrared radiant powder was synthesized by conventional ceramic processing techniques by using Fe2 O3, MnO2, CuO, Co2 O3 and kaolin as raw materials. A novel infrared radant glaze was developed by introducing the infrared radiant powder into glazing as a functional additive. Infrared radiant characteristics of the powder and the glaze were investigated. The optimum content of infrared radiant powder in glazing was ascertained to be 5% . The infrared radiant glaze exhibits significant antibacterial and antifungal Junctions due to the thermal effect of infrared radiation. Antibacterial percentages of the glaze reach 91% - 100% when Escherichia coli, Staphylococcus aureus and Bacillus subtilis are used as model bacterium respectively, while antifungal percentage of the glaze exceeds 95% when Penicillum citrinum is used as model fungus.