Conventional semi-active laser guidance takes advantage of the laser designator to illuminate the stable and uniform laser spot on target precisely.The seeker collects the reflected light by a quadrant detector and ou...Conventional semi-active laser guidance takes advantage of the laser designator to illuminate the stable and uniform laser spot on target precisely.The seeker collects the reflected light by a quadrant detector and outputs the relative position information to guide the missile to the illuminating laser spot.However,the designation and guidance accuracy could be jeopardized by the randomly drifting of laser spot caused by the instability of designation platform and air turbulence.In this work,ghost imaging technique is adapted to a quadrant detector semi-active seeker by utilizing structured illumination on the target.With a series of structured illumination masks,the signals from the quadrant detector are multiplexed to perform calculation of the target relative position as well as image reconstruction of the illuminated area simultaneously.Automatic target recognition methods could be further applied to the reconstructed image to calculate the designating error and correct the guidance.The results of simulation and experiment demonstrate that the proposed method could improve the guidance accuracy in many circumstances which would lead to attacking deviation if conventional semi-active laser guidance is used.展开更多
Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system ...Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided.展开更多
We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cos...We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cosine transform speckle,are used as the characteristic information and the input of the designed deep neural network(DNN),and the output of the DNN is the classification.The results show that the proposed scheme has a higher recognition accuracy(as high as 98%for the simulations,and 91%for the experiments)with a smaller sampling ratio(say 12.76%).With the increase of the sampling ratio,the recognition accuracy is enhanced.Compared with the traditional recognition scheme using the same DNN structure,the proposed scheme has slightly better performance with a lower complexity and non-locality property.The proposed scheme provides a promising way for remote sensing.展开更多
The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on ...The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on the spatial coherence of the source and the aperture in the imaging system are discussed and demonstrated by using numerical simulations. The results show that an incoherent source and a large aperture will lead to a good image quality and small noise.展开更多
High-order ghost imaging with thermal light consisting of N different frequencies is investigated. The high-order intensity correlation and intrinsic correlation functions are derived for such N-colour light. It is fo...High-order ghost imaging with thermal light consisting of N different frequencies is investigated. The high-order intensity correlation and intrinsic correlation functions are derived for such N-colour light. It is found that they are similar in form to those for the monochromatic case, thus most of the conclusions we obtained previously for monochromatic Nth-order ghost imaging are still applicable. However, we find that the visibility of the N-colour ghost image depends strongly on the wavelength used to illuminate the object, and increases as this wavelength increases when the test arm is fixed. On the contrary, changes of wavelength in the reference arms do not lead to any change of the visibility.展开更多
Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident...Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.展开更多
Owing to the constraints on the fabrication ofγ-ray coding plates with many pixels,few studies have been carried out onγ-ray computational ghost imaging.Thus,the development of coding plates with fewer pixels is ess...Owing to the constraints on the fabrication ofγ-ray coding plates with many pixels,few studies have been carried out onγ-ray computational ghost imaging.Thus,the development of coding plates with fewer pixels is essential to achieveγ-ray computational ghost imaging.Based on the regional similarity between Hadamard subcoding plates,this study presents an optimization method to reduce the number of pixels of Hadamard coding plates.First,a moving distance matrix was obtained to describe the regional similarity quantitatively.Second,based on the matrix,we used two ant colony optimization arrangement algorithms to maximize the reuse of pixels in the regional similarity area and obtain new compressed coding plates.With full sampling,these two algorithms improved the pixel utilization of the coding plate,and the compression ratio values were 54.2%and 58.9%,respectively.In addition,three undersampled sequences(the Harr,Russian dolls,and cake-cutting sequences)with different sampling rates were tested and discussed.With different sampling rates,our method reduced the number of pixels of all three sequences,especially for the Russian dolls and cake-cutting sequences.Therefore,our method can reduce the number of pixels,manufacturing cost,and difficulty of the coding plate,which is beneficial for the implementation and application ofγ-ray computational ghost imaging.展开更多
Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibili...Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale "double-slit" image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale "lena" object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using G1 and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale "double-slit" object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time.展开更多
A fast converging sparse reconstruction algorithm in ghost imaging is presented. It utilizes total variation regularization and its formulation is based on the Karush-Kuhn-Tucker (KKT) theorem in the theory of convex ...A fast converging sparse reconstruction algorithm in ghost imaging is presented. It utilizes total variation regularization and its formulation is based on the Karush-Kuhn-Tucker (KKT) theorem in the theory of convex optimization. Tests using experimental data show that, compared with the algorithm of Gradient Projection for Sparse Reconstruction (GPSR), the proposed algorithm yields better results with less computation work.展开更多
It is generally believed that,in ghost imaging,there has to be a compromise between resolution and visibility.Here we propose and demonstrate an iterative filtered ghost imaging scheme whereby a super-resolution image...It is generally believed that,in ghost imaging,there has to be a compromise between resolution and visibility.Here we propose and demonstrate an iterative filtered ghost imaging scheme whereby a super-resolution image of a grayscale object is achieved,while at the same time the signal-to-noise ratio(SNR)and visibility are greatly improved,without adding complexity.The dependence of the SNR,visibility,and resolution on the number of iterations is also investigated and discussed.Moreover,with the use of compressed sensing the sampling number can be reduced to less than 1%of the Nyquist limit,while maintaining image quality with a resolution that can exceed the Rayleigh diffraction bound by more than a factor of 10.展开更多
We propose a new full color ghost imaging scheme using both time and code division multiplexing technologies.In the scheme,the speckle patterns of three colors(red,green and blue)are modulated with different time slot...We propose a new full color ghost imaging scheme using both time and code division multiplexing technologies.In the scheme,the speckle patterns of three colors(red,green and blue)are modulated with different time slots and codes.The light intensity is sampled by one bucket detector.Then based on the modulated time slots and codes,we can effectively and simultaneously extract three detection component signals corresponding to three color components of objects from the sampling signal of the bucket detector.Finally,three component images resulting from the three component detection signals can be synthesized into a full color image.The experimental results verify the feasibility of our scheme under the limit of the number of time slots and codes.Moreover,our scheme reduces the number of bucket detectors and can realize high quality imaging even in a noisy environment.展开更多
Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the ...Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the imaging performance of CGI.In this scheme,we optimize the conventional CGI data processing algorithm by using a novel compressed sensing(CS)algorithm based on a deep convolution generative adversarial network(DCGAN).CS is used to process the data output by a conventional CGI device.The processed data are trained by a DCGAN to reconstruct the image.Qualitative and quantitative results show that this method significantly improves the quality of reconstructed images by jointly training a generator and the optimization process for reconstruction via meta-learning.Moreover,the background noise can be eliminated well by this method.展开更多
Ghost imaging(GI)offers great potential with respect to conventional imaging techniques.However,there are still some obstacles for reconstructing images with high quality,especially in the case that the orthogonal mea...Ghost imaging(GI)offers great potential with respect to conventional imaging techniques.However,there are still some obstacles for reconstructing images with high quality,especially in the case that the orthogonal measurement matrix is impossible to construct.In this paper,we propose a new scheme based on the orthogonal-triangular(QR)decomposition,named QR decomposition ghost imaging(QRGI)to reconstruct a better image with good quality.In the scheme,we can change the randomly non-orthogonal measurement matrix into orthonormal matrix by performing QR decomposition in two cases.(1)When the random measurement matrix is square,it can be firstly decomposed into an orthogonal matrix Q and an upper triangular matrix R.Then let the off-diagonal values of R equal to 0.0,the diagonal elements of R equal to a constant k,where k is the average of all values of the main diagonal,so the resulting measurement matrix can be obtained.(2)When the random measurement matrix is with full rank,we firstly compute its transpose,and followed with above QR operation.Finally,the image of the object can be reconstructed by correlating the new measurement matrix and corresponding bucket values.Both experimental and simulation results verify the feasibility of the proposed QRGI scheme.Moreover,the results also show that the proposed QRGI scheme could improve the imaging quality comparing to traditional GI(TGI)and differential GI(DGI).Besides,in comparison with the singular value decomposition ghost imaging(SVDGI),the imaging quality and the reconstruction time by using QRGI are similar to those by using SVDGI,while the computing time(the time consuming on the light patterns computation)is substantially shortened.展开更多
In this paper, we improve traditional generative adversarial networks (GAN) with reference to residual networks and convolutional neural networks to facilitate the reconstruction of complex objects that cannot be reco...In this paper, we improve traditional generative adversarial networks (GAN) with reference to residual networks and convolutional neural networks to facilitate the reconstruction of complex objects that cannot be reconstructed by traditional associative imaging methods. Unlike traditional ghost imaging to reconstruct objects from bucket signals, our proposed method can use simple objects (such as EMNIST) as a training set for GAN, and then recognize objects (such as faces) of completely different complexity than the training set. We use traditional ghost imaging and neural network to reconstruct target objects respectively. According to the research results in this paper, the method based on neural network can reconstruct complex objects very well, but the method based on traditional ghost imaging cannot reconstruct complex objects. The research scheme in this paper is of great significance for the reconstruction of complex object-related imaging under low sampling conditions.展开更多
We experimentally demonstrate a novel ghost imaging experiment utilizing a classical light source, capable of resolving objects with a high visibility. The experimental results show that our scheme can indeed realize ...We experimentally demonstrate a novel ghost imaging experiment utilizing a classical light source, capable of resolving objects with a high visibility. The experimental results show that our scheme can indeed realize ghost imaging with high visibility for a relatively complicated object composed of three near-ellipse-shaped holes with different dimensions. In our experiment, the largest hole is -36 times of the smMlest one in area. Each of the three holes exhibits high-visibility in excess of 80%. The high visibility and high spatial-resolution advantages of this technique could have applications in remote sensing.展开更多
We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before i...We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.展开更多
We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to ...We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to the slow light or dispersion principle. Meanwhile, the equality of the optical distance of the two light arms is not violated. The photon correlation is achieved by the rotating ground glass plate(RGGP) and spatial light modulator(SLM), respectively. Our work shows that a monochromic ghost image can be obtained in the case of RGGP. More importantly, the position(or distance) of the object can be ascertained by the color of the image. Thus, the imaging and ranging processes are combined as one process for the first time to the best of our knowledge. In the case of SLM, we can obtain a colored image regardless of where the object is.展开更多
An optical encryption(OE) scheme based on the spread spectrum ghost imaging(SSGI), named as SSGI-OE, is proposed to obtain a high security with a smaller key. In the scheme, the randomly selected row number of a Hadam...An optical encryption(OE) scheme based on the spread spectrum ghost imaging(SSGI), named as SSGI-OE, is proposed to obtain a high security with a smaller key. In the scheme, the randomly selected row number of a Hadamard matrix of order N is used as the secure key, and shared with the authorized user, Bob, through a private channel. Each corresponding row vector of the order-N Hadamard matrix is then used as the direct sequence code to modulate a speckle pattern for the ghost imaging system, and an image is encrypted with the help of the SSGI. The measurement results from the bucket detector, named as ciphertext, are then transmitted to Bob through a public channel. The illuminating speckle patterns are also shared with Bob by the public channel. With the correct secure key, Bob could reconstruct the image with the aid of the SSGI system, whereas the unauthorized user, Eve, could not obtain any useful information of the encrypted image. The numerical simulations and experimental results show that the proposed scheme is feasible with a higher security and a smaller key. For the 32 × 32 pixels image, the number of bits sent from Alice to Bob by using SSGIOE(M = 1024, N = 2048) scheme is only 0.0107 times over a computational ghost imaging optical encryption scheme.When the eavesdropping ratio(ER) is less than 40%, the eavesdropper cannot acquire any information of the encrypted image. The extreme circumstance for the proposed SSGI-OE scheme is also discussed, where the eavesdropper begins to extract the information when ER is up to 15%.展开更多
A filtered ghost imaging(GI)protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system;a super-resolution reconstructed image is achieved by low-pass filtering o...A filtered ghost imaging(GI)protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system;a super-resolution reconstructed image is achieved by low-pass filtering of the measured intensities.In a lensless GI experiment performed with spatial bandpass filtering,the spatial resolution can exceed the Rayleigh diffraction bound by more than a factor of 10.The resolution depends on the bandwidth of the filter,and the relationship between the two is investigated and discussed.In combination with compressed sensing programming,not only high resolution can be maintained but also image quality can be improved,while a much lower sampling number is sufficient.展开更多
We propose a method for imaging a periodic moving/state-changed object based on computational ghost imaging with Hadamard speckle patterns and a slow bucket detector, named as PO-HCGI. In the scheme, speckle patterns ...We propose a method for imaging a periodic moving/state-changed object based on computational ghost imaging with Hadamard speckle patterns and a slow bucket detector, named as PO-HCGI. In the scheme, speckle patterns are produced from a part of each row of a Hadamard matrix. Then, in each cycle, multiple speckle patterns are projected onto the periodic moving/state-changed object, and a bucket detector with a slow sampling rate records the total intensities reflected from the object as one measurement. With a series of measurements, the frames of the moving/state-changed object can be obtained directly by the second-order correlation function based on the Hadamard matrix and the corresponding bucket detector measurement results. The experimental and simulation results demonstrate the validity of the PO-HCGI. To the best of our knowledge, PO-HCGI is the first scheme that can image a fast periodic moving/state-changed object by computational ghost imaging with a slow bucket detector.展开更多
基金co-supported by National Natural Science Foundation of China(Nos.61922011 and 61675016)the Fundamental Research Funds for the Central Universities。
文摘Conventional semi-active laser guidance takes advantage of the laser designator to illuminate the stable and uniform laser spot on target precisely.The seeker collects the reflected light by a quadrant detector and outputs the relative position information to guide the missile to the illuminating laser spot.However,the designation and guidance accuracy could be jeopardized by the randomly drifting of laser spot caused by the instability of designation platform and air turbulence.In this work,ghost imaging technique is adapted to a quadrant detector semi-active seeker by utilizing structured illumination on the target.With a series of structured illumination masks,the signals from the quadrant detector are multiplexed to perform calculation of the target relative position as well as image reconstruction of the illuminated area simultaneously.Automatic target recognition methods could be further applied to the reconstructed image to calculate the designating error and correct the guidance.The results of simulation and experiment demonstrate that the proposed method could improve the guidance accuracy in many circumstances which would lead to attacking deviation if conventional semi-active laser guidance is used.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11175094 and 91221205)the National Basic Research Program of China(Grant No.2015CB921002)partially supported by the Basic Research Fund of Beijing Institute of Technology(Grant No.20141842005)
文摘Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided.
基金the National Natural Science Foundation of China(Grant Nos.61871234 and 11847062).
文摘We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cosine transform speckle,are used as the characteristic information and the input of the designed deep neural network(DNN),and the output of the DNN is the classification.The results show that the proposed scheme has a higher recognition accuracy(as high as 98%for the simulations,and 91%for the experiments)with a smaller sampling ratio(say 12.76%).With the increase of the sampling ratio,the recognition accuracy is enhanced.Compared with the traditional recognition scheme using the same DNN structure,the proposed scheme has slightly better performance with a lower complexity and non-locality property.The proposed scheme provides a promising way for remote sensing.
基金Project supported by the Shanghai Rising-Star Programme of China, the National Natural Science Foundation of China (Grant No 10404031), the K.C. Wong Education Foundation (Hong Kong), and the Research Grants Council of the Hong Kong Government of China (Grant No 604804).
文摘The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on the spatial coherence of the source and the aperture in the imaging system are discussed and demonstrated by using numerical simulations. The results show that an incoherent source and a large aperture will lead to a good image quality and small noise.
基金supported by the National Natural Science Foundation of China (Grant No. 60978002)the National Fundamental Research Programme of China (Grant Nos. 2006CB921107 and 2010CB922904)
文摘High-order ghost imaging with thermal light consisting of N different frequencies is investigated. The high-order intensity correlation and intrinsic correlation functions are derived for such N-colour light. It is found that they are similar in form to those for the monochromatic case, thus most of the conclusions we obtained previously for monochromatic Nth-order ghost imaging are still applicable. However, we find that the visibility of the N-colour ghost image depends strongly on the wavelength used to illuminate the object, and increases as this wavelength increases when the test arm is fixed. On the contrary, changes of wavelength in the reference arms do not lead to any change of the visibility.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0206004,2017YFA0206002,2018YFC0206002,and 2017YFA0403801)National Natural Science Foundation of China(Grant No.81430087)。
文摘Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.
基金supported by the Youth Science Foundation of Sichuan Province(Nos.22NSFSC3816 and 2022NSFSC1231)the General Project of the National Natural Science Foundation of China(Nos.12075039 and 41874121)the Key Project of the National Natural Science Foundation of China(No.U19A2086).
文摘Owing to the constraints on the fabrication ofγ-ray coding plates with many pixels,few studies have been carried out onγ-ray computational ghost imaging.Thus,the development of coding plates with fewer pixels is essential to achieveγ-ray computational ghost imaging.Based on the regional similarity between Hadamard subcoding plates,this study presents an optimization method to reduce the number of pixels of Hadamard coding plates.First,a moving distance matrix was obtained to describe the regional similarity quantitatively.Second,based on the matrix,we used two ant colony optimization arrangement algorithms to maximize the reuse of pixels in the regional similarity area and obtain new compressed coding plates.With full sampling,these two algorithms improved the pixel utilization of the coding plate,and the compression ratio values were 54.2%and 58.9%,respectively.In addition,three undersampled sequences(the Harr,Russian dolls,and cake-cutting sequences)with different sampling rates were tested and discussed.With different sampling rates,our method reduced the number of pixels of all three sequences,especially for the Russian dolls and cake-cutting sequences.Therefore,our method can reduce the number of pixels,manufacturing cost,and difficulty of the coding plate,which is beneficial for the implementation and application ofγ-ray computational ghost imaging.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271238)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123223110003)the University Natural Science Research Foundation of Jiangsu Province,China(Grant No.11KJA510002)
文摘Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale "double-slit" image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale "lena" object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using G1 and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale "double-slit" object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time.
基金Supported by the Hi-Tech Research and Development Program of China (No. 2011AA120102)
文摘A fast converging sparse reconstruction algorithm in ghost imaging is presented. It utilizes total variation regularization and its formulation is based on the Karush-Kuhn-Tucker (KKT) theorem in the theory of convex optimization. Tests using experimental data show that, compared with the algorithm of Gradient Projection for Sparse Reconstruction (GPSR), the proposed algorithm yields better results with less computation work.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFB0504302)the National Natural Science Foundation of China(Grant No.61975229)Civil Space Project(Grant No.D040301)。
文摘It is generally believed that,in ghost imaging,there has to be a compromise between resolution and visibility.Here we propose and demonstrate an iterative filtered ghost imaging scheme whereby a super-resolution image of a grayscale object is achieved,while at the same time the signal-to-noise ratio(SNR)and visibility are greatly improved,without adding complexity.The dependence of the SNR,visibility,and resolution on the number of iterations is also investigated and discussed.Moreover,with the use of compressed sensing the sampling number can be reduced to less than 1%of the Nyquist limit,while maintaining image quality with a resolution that can exceed the Rayleigh diffraction bound by more than a factor of 10.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62001249 and 61871234)the NUPTSF(Grant No.NY220004)the Scientific Research Project of College of Information Engineering,Fuyang Normal University(Grant No.FXG2021ZZ02)。
文摘We propose a new full color ghost imaging scheme using both time and code division multiplexing technologies.In the scheme,the speckle patterns of three colors(red,green and blue)are modulated with different time slots and codes.The light intensity is sampled by one bucket detector.Then based on the modulated time slots and codes,we can effectively and simultaneously extract three detection component signals corresponding to three color components of objects from the sampling signal of the bucket detector.Finally,three component images resulting from the three component detection signals can be synthesized into a full color image.The experimental results verify the feasibility of our scheme under the limit of the number of time slots and codes.Moreover,our scheme reduces the number of bucket detectors and can realize high quality imaging even in a noisy environment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704221,11574178,and 61675115)the Taishan Scholar Project of Shandong Province,China(Grant No.tsqn201812059)。
文摘Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the imaging performance of CGI.In this scheme,we optimize the conventional CGI data processing algorithm by using a novel compressed sensing(CS)algorithm based on a deep convolution generative adversarial network(DCGAN).CS is used to process the data output by a conventional CGI device.The processed data are trained by a DCGAN to reconstruct the image.Qualitative and quantitative results show that this method significantly improves the quality of reconstructed images by jointly training a generator and the optimization process for reconstruction via meta-learning.Moreover,the background noise can be eliminated well by this method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX200729)+1 种基金Natural Science Research Project of Higher Education of Jiangsu Province,China(Grant No.20KJB510030)Research project of NanJing Tech University Pujiang Institute(Grant No.njpj2020-1-02)。
文摘Ghost imaging(GI)offers great potential with respect to conventional imaging techniques.However,there are still some obstacles for reconstructing images with high quality,especially in the case that the orthogonal measurement matrix is impossible to construct.In this paper,we propose a new scheme based on the orthogonal-triangular(QR)decomposition,named QR decomposition ghost imaging(QRGI)to reconstruct a better image with good quality.In the scheme,we can change the randomly non-orthogonal measurement matrix into orthonormal matrix by performing QR decomposition in two cases.(1)When the random measurement matrix is square,it can be firstly decomposed into an orthogonal matrix Q and an upper triangular matrix R.Then let the off-diagonal values of R equal to 0.0,the diagonal elements of R equal to a constant k,where k is the average of all values of the main diagonal,so the resulting measurement matrix can be obtained.(2)When the random measurement matrix is with full rank,we firstly compute its transpose,and followed with above QR operation.Finally,the image of the object can be reconstructed by correlating the new measurement matrix and corresponding bucket values.Both experimental and simulation results verify the feasibility of the proposed QRGI scheme.Moreover,the results also show that the proposed QRGI scheme could improve the imaging quality comparing to traditional GI(TGI)and differential GI(DGI).Besides,in comparison with the singular value decomposition ghost imaging(SVDGI),the imaging quality and the reconstruction time by using QRGI are similar to those by using SVDGI,while the computing time(the time consuming on the light patterns computation)is substantially shortened.
文摘In this paper, we improve traditional generative adversarial networks (GAN) with reference to residual networks and convolutional neural networks to facilitate the reconstruction of complex objects that cannot be reconstructed by traditional associative imaging methods. Unlike traditional ghost imaging to reconstruct objects from bucket signals, our proposed method can use simple objects (such as EMNIST) as a training set for GAN, and then recognize objects (such as faces) of completely different complexity than the training set. We use traditional ghost imaging and neural network to reconstruct target objects respectively. According to the research results in this paper, the method based on neural network can reconstruct complex objects very well, but the method based on traditional ghost imaging cannot reconstruct complex objects. The research scheme in this paper is of great significance for the reconstruction of complex object-related imaging under low sampling conditions.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921900the National Natural Science Foundation of China under Grant Nos 11534006,11274183 and 11374166the National Scientific Instrument and Equipment Development Project under Grant No 2012YQ17004
文摘We experimentally demonstrate a novel ghost imaging experiment utilizing a classical light source, capable of resolving objects with a high visibility. The experimental results show that our scheme can indeed realize ghost imaging with high visibility for a relatively complicated object composed of three near-ellipse-shaped holes with different dimensions. In our experiment, the largest hole is -36 times of the smMlest one in area. Each of the three holes exhibits high-visibility in excess of 80%. The high visibility and high spatial-resolution advantages of this technique could have applications in remote sensing.
基金supported by the National Natural Science Foundation of China(Grant Nos.11204117,11304007,and 60907031)the China Postdoctoral Science Foundation(Grant No.2013M540146)+1 种基金the Fund from the Education Department of Liaoning Province,China(Grant No.L2012001)the National HiTech Research and Development Program of China(Grant No.2013AA122902)
文摘We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61178012,11204156,11304179,and 11247240)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20133705110001 and 20123705120002)+1 种基金the Scientific Research Foundation for Outstanding Young Scientists of Shandong Province,China(Grant No.BS2013DX034)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2012FQ024)
文摘We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to the slow light or dispersion principle. Meanwhile, the equality of the optical distance of the two light arms is not violated. The photon correlation is achieved by the rotating ground glass plate(RGGP) and spatial light modulator(SLM), respectively. Our work shows that a monochromic ghost image can be obtained in the case of RGGP. More importantly, the position(or distance) of the object can be ascertained by the color of the image. Thus, the imaging and ranging processes are combined as one process for the first time to the best of our knowledge. In the case of SLM, we can obtain a colored image regardless of where the object is.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX200729)+3 种基金the Natural Science Research Project of Higher Education of Jiangsu Province(Grant No.20KJB510030)the Qing Lan Project of Jiangsu Province(Su Teacher’s Letter[2022]No.29)the Research project of NanJing Tech University Pujiang Institute(Grant No.njpj2022-1-25)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘An optical encryption(OE) scheme based on the spread spectrum ghost imaging(SSGI), named as SSGI-OE, is proposed to obtain a high security with a smaller key. In the scheme, the randomly selected row number of a Hadamard matrix of order N is used as the secure key, and shared with the authorized user, Bob, through a private channel. Each corresponding row vector of the order-N Hadamard matrix is then used as the direct sequence code to modulate a speckle pattern for the ghost imaging system, and an image is encrypted with the help of the SSGI. The measurement results from the bucket detector, named as ciphertext, are then transmitted to Bob through a public channel. The illuminating speckle patterns are also shared with Bob by the public channel. With the correct secure key, Bob could reconstruct the image with the aid of the SSGI system, whereas the unauthorized user, Eve, could not obtain any useful information of the encrypted image. The numerical simulations and experimental results show that the proposed scheme is feasible with a higher security and a smaller key. For the 32 × 32 pixels image, the number of bits sent from Alice to Bob by using SSGIOE(M = 1024, N = 2048) scheme is only 0.0107 times over a computational ghost imaging optical encryption scheme.When the eavesdropping ratio(ER) is less than 40%, the eavesdropper cannot acquire any information of the encrypted image. The extreme circumstance for the proposed SSGI-OE scheme is also discussed, where the eavesdropper begins to extract the information when ER is up to 15%.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFB0504302 and 2017YFB0503301)Defense Industrial Technology Development Program(Grant No.D040301-1)。
文摘A filtered ghost imaging(GI)protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system;a super-resolution reconstructed image is achieved by low-pass filtering of the measured intensities.In a lensless GI experiment performed with spatial bandpass filtering,the spatial resolution can exceed the Rayleigh diffraction bound by more than a factor of 10.The resolution depends on the bandwidth of the filter,and the relationship between the two is investigated and discussed.In combination with compressed sensing programming,not only high resolution can be maintained but also image quality can be improved,while a much lower sampling number is sufficient.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)the University Talent Project of Anhui Province,China(Grant No.gxyq2020102)the Scientific Research Project of College of Information Engineering,Fuyang Normal University(Grant No.FXG2021ZZ02)。
文摘We propose a method for imaging a periodic moving/state-changed object based on computational ghost imaging with Hadamard speckle patterns and a slow bucket detector, named as PO-HCGI. In the scheme, speckle patterns are produced from a part of each row of a Hadamard matrix. Then, in each cycle, multiple speckle patterns are projected onto the periodic moving/state-changed object, and a bucket detector with a slow sampling rate records the total intensities reflected from the object as one measurement. With a series of measurements, the frames of the moving/state-changed object can be obtained directly by the second-order correlation function based on the Hadamard matrix and the corresponding bucket detector measurement results. The experimental and simulation results demonstrate the validity of the PO-HCGI. To the best of our knowledge, PO-HCGI is the first scheme that can image a fast periodic moving/state-changed object by computational ghost imaging with a slow bucket detector.