Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their se...Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their service life is essential for the overall functionality of geotechnical infrastructure.Distributed Brillouin sensing(DBS)is increasingly applied in geotechnical projects due to its ability to acquire spatially continuous strain and temperature distributions over distances of up to 150 km using a single optical fibre.However,limited by the complex operations of distributed optic fibre sensing(DFOS)sensors in curved structures,previous reports about exploiting DBS in geotechnical structural health monitoring(SHM)have mostly been focused on flat surfaces.The lack of suitable DFOS installation methods matched to the spatial characteristics of continuous monitoring is one of the major factors that hinder the further application of this technique in curved structures.This review paper starts with a brief introduction of the fundamental working principle of DBS and the inherent limitations of DBS being used on monitoring curved surfaces.Subsequently,the state-of-the-art installation methods of optical fibres in curved structures are reviewed and compared to address the most suitable scenario of each method and their advantages and disadvantages.The installation challenges of optical fibres that can highly affect measurement accuracy are also discussed in the paper.展开更多
The nonlinearity of the strain energy at an interval period of applying seismic load on the geostructures makes it difficult for a seismic designer to makes appropriate engineering judgments timely.The nonlinear stres...The nonlinearity of the strain energy at an interval period of applying seismic load on the geostructures makes it difficult for a seismic designer to makes appropriate engineering judgments timely.The nonlinear stress and strain analysis of an embankment is needed to evaluate by using a combination of suitable methods.In this study,a large-scale geostructure was seismically simulated and analyzed using the nonlinear finite element method(NFEM),and linear regression method which is a soft computing technique(SC)was applied for evaluating the results of NFEM,and it supports engineering judgment because the design of the geostructures is usually considered to be an inaccurate process owing to high nonlinearity of the large-scale geostructures seismic response and such nonlinearity may induce the complexity for decision making in geostructures seismic design.The occurrence of nonlinear stress and nonlinear strain probability distribution can be observed and density of stress and strain are predicted by using the histogram.The results of both the simulation from the NFEM and the linear regression method confirm the nonlinearity of strain energy and stress behavior have a close value of R2 and root-mean-square error(RMSE).The linear regression and histogram simulation shows the accuracy of NFEM results.The outcome of this study guides to improve engineering judgment quality for seismic analysis of an embankment through validating results of NFEM by employing appropriate soft computing techniques.展开更多
Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rock...Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.展开更多
Thermo-active diaphragm walls have proved their effectiveness in the thermal conditioning of buildings and infrastructures. However, some aspects still need to be investigated in order to tailor methods and tools for ...Thermo-active diaphragm walls have proved their effectiveness in the thermal conditioning of buildings and infrastructures. However, some aspects still need to be investigated in order to tailor methods and tools for an accurate prediction of their energy and structural performance. In this perspective, some issues are addressed that concern the definition of models for the numerical analysis, in particular issues about the modelling of geometry and thermal boundary conditions. Taking advantage of a monitoring programme on a real full-scale structure, this research focuses on the assessment of heat transfer process and thermal response of diaphragm wall and soil mass on the basis of field data. Understanding of the heat transfer process contributes to the definition of the time-dependent thermal boundary conditions at the excavation side. From the analysis of thermal gradients in the wall, the condition at the excavation side is recognised as a major factor that influences the heat transfer process, governing the direction of the heat flux in different seasons of operation of the geothermal system.展开更多
The use of terrestrial laser scanning(TLS) in the caves has been growing drastically over the last decade.However, TLS application to cave stability assessment has not received much attention of researchers.This stu...The use of terrestrial laser scanning(TLS) in the caves has been growing drastically over the last decade.However, TLS application to cave stability assessment has not received much attention of researchers.This study attempted to utilize rock surface orientations obtained from TLS point cloud collected along cave passages to(1) investigate the influence of rock geostructure on cave passage development, and(2)assess cave stability by determining areas susceptible to different failure types. The TLS point cloud was divided into six parts(Entry hall, Chamber, Main hall, Shaft 1, Shaft 2 and Shaft 3), each representing different segments of the cave passages. Furthermore, the surface orientation information was extracted and grouped into surface discontinuity joint sets. The computed global mean and best-fit planes of the entire cave show that the outcrop dips 290° with a major north-south strike. But at individual level, the passages with dip angle between 26° and 80° are featured with dip direction of 75°-322°. Kinematic tests reveal the potential for various failure modes of rock slope. Our findings show that toppling is the dominant failure type accounting for high-risk rockfall in the cave, with probabilities of 75.26%, 43.07%and 24.82% in the Entry hall, Main hall and Shaft 2, respectively. Unlike Shaft 2 characterized by high risk of the three failure types(32.49%, 24.82% and 50%), the chamber and Shaft 3 passages are not suffering from slope failure. The results also show that the characteristics of rock geostructure considerably influence the development of the cave passages, and four sections of the cave are susceptible to different slope failure types, at varying degrees of risk.展开更多
Increase in requirement of hydrosulphuric water for improvement of the population set the task of identification of places of their possible congestion for hydrogeological service. Earlier detection of such congestion...Increase in requirement of hydrosulphuric water for improvement of the population set the task of identification of places of their possible congestion for hydrogeological service. Earlier detection of such congestions was accidental at well-drilling of different function. Therefore, development of new methodical approaches of search and allocation of perspective zones of their formation was required. It was for this purpose necessary to study in what conditions and what factors have an impact on formation of underground hydrosulphuric water. So far, definition of communication attempts only with separate geochemical signs was known. Results of studying of influence on formations of hydrosulphuric water of such factors as lithologic and facial in combination with oil-and-gas content, the geological and structural and hydrodynamic mode are given in this work. It is established that the main sign for formation of hydrosulphuric water is existence of evaporite thickness and hydrocarbon congestions. Besides, it is shown that small depth (up to 2 km) of their bedding has to be an indispensable condition and existence of explosive violation on which there has to be a water infiltration (a geological and structural factor). In the Surkhandarya region, the hydrodynamic mode caused by inclined bedding of aquifers was also one of essential factors. Active water is an exchange process with washing away (oxidation) sulfate of the containing thicknesses and subsequently, its restoration in interaction with hydrocarbons with formation of hydrosulphuric water is described. The technique is developed and the expected card of perspective zones of formation of hydrosulphuric water is constructed.展开更多
Energy geostructures(EGs)employ heat exchangers embedded in concrete geostructures,such as piles,walls,tunnels,and sewers.In this study,energy walls(EWs)are studied with an emphasis on the following objectives:(1)to u...Energy geostructures(EGs)employ heat exchangers embedded in concrete geostructures,such as piles,walls,tunnels,and sewers.In this study,energy walls(EWs)are studied with an emphasis on the following objectives:(1)to understand the fundamentals of hydrothermal interactions acting in the vicinity of EWs caused by groundwater seepage in saturated soil;(2)to highlight hydraulically induced thermal effects and their consequences on the thermal performance of EWs.Extensive three-dimensional hydrothermal finite element analyses are performed considering two groundwater flow conditions:perpendicular and parallel to the EW.The thermal activation of the geostructure locally modifies the flownet with respect to the non-isothermal case because of the temperature dependency of the water properties.Mutual interactions between seepage directions and thermal activation are analyzed.Remarkable thermal interactions are detected within the heat exchangers.The thermal behavior of EGs is highly affected by an incorrect evaluation of the hydraulically induced thermal effects,which may result in an overestimation of the thermal behavior.Conversely,an efficient thermal design,which considers such interactions,may increase the thermal potential of EGs.展开更多
基金support provided by Science Foundation Ireland Frontiers for the Future Programme,21/FFP-P/10090.
文摘Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their service life is essential for the overall functionality of geotechnical infrastructure.Distributed Brillouin sensing(DBS)is increasingly applied in geotechnical projects due to its ability to acquire spatially continuous strain and temperature distributions over distances of up to 150 km using a single optical fibre.However,limited by the complex operations of distributed optic fibre sensing(DFOS)sensors in curved structures,previous reports about exploiting DBS in geotechnical structural health monitoring(SHM)have mostly been focused on flat surfaces.The lack of suitable DFOS installation methods matched to the spatial characteristics of continuous monitoring is one of the major factors that hinder the further application of this technique in curved structures.This review paper starts with a brief introduction of the fundamental working principle of DBS and the inherent limitations of DBS being used on monitoring curved surfaces.Subsequently,the state-of-the-art installation methods of optical fibres in curved structures are reviewed and compared to address the most suitable scenario of each method and their advantages and disadvantages.The installation challenges of optical fibres that can highly affect measurement accuracy are also discussed in the paper.
文摘The nonlinearity of the strain energy at an interval period of applying seismic load on the geostructures makes it difficult for a seismic designer to makes appropriate engineering judgments timely.The nonlinear stress and strain analysis of an embankment is needed to evaluate by using a combination of suitable methods.In this study,a large-scale geostructure was seismically simulated and analyzed using the nonlinear finite element method(NFEM),and linear regression method which is a soft computing technique(SC)was applied for evaluating the results of NFEM,and it supports engineering judgment because the design of the geostructures is usually considered to be an inaccurate process owing to high nonlinearity of the large-scale geostructures seismic response and such nonlinearity may induce the complexity for decision making in geostructures seismic design.The occurrence of nonlinear stress and nonlinear strain probability distribution can be observed and density of stress and strain are predicted by using the histogram.The results of both the simulation from the NFEM and the linear regression method confirm the nonlinearity of strain energy and stress behavior have a close value of R2 and root-mean-square error(RMSE).The linear regression and histogram simulation shows the accuracy of NFEM results.The outcome of this study guides to improve engineering judgment quality for seismic analysis of an embankment through validating results of NFEM by employing appropriate soft computing techniques.
基金supported by National Natural Science Foundation of China(Grant Nos.U2244226,U2244227 and 42177172).
文摘Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.
基金the support of COST Action TU1405 GABI (Geothermal Applications for Building and Infrastructures)
文摘Thermo-active diaphragm walls have proved their effectiveness in the thermal conditioning of buildings and infrastructures. However, some aspects still need to be investigated in order to tailor methods and tools for an accurate prediction of their energy and structural performance. In this perspective, some issues are addressed that concern the definition of models for the numerical analysis, in particular issues about the modelling of geometry and thermal boundary conditions. Taking advantage of a monitoring programme on a real full-scale structure, this research focuses on the assessment of heat transfer process and thermal response of diaphragm wall and soil mass on the basis of field data. Understanding of the heat transfer process contributes to the definition of the time-dependent thermal boundary conditions at the excavation side. From the analysis of thermal gradients in the wall, the condition at the excavation side is recognised as a major factor that influences the heat transfer process, governing the direction of the heat flux in different seasons of operation of the geothermal system.
基金supported by Ministry of Higher Education, Malaysia research grant(No. FRGS/1-2014-STWN06/UPM/02/1) with vote number 5524502University Putra Malaysia research grant(No.GP-1/2014/943200)
文摘The use of terrestrial laser scanning(TLS) in the caves has been growing drastically over the last decade.However, TLS application to cave stability assessment has not received much attention of researchers.This study attempted to utilize rock surface orientations obtained from TLS point cloud collected along cave passages to(1) investigate the influence of rock geostructure on cave passage development, and(2)assess cave stability by determining areas susceptible to different failure types. The TLS point cloud was divided into six parts(Entry hall, Chamber, Main hall, Shaft 1, Shaft 2 and Shaft 3), each representing different segments of the cave passages. Furthermore, the surface orientation information was extracted and grouped into surface discontinuity joint sets. The computed global mean and best-fit planes of the entire cave show that the outcrop dips 290° with a major north-south strike. But at individual level, the passages with dip angle between 26° and 80° are featured with dip direction of 75°-322°. Kinematic tests reveal the potential for various failure modes of rock slope. Our findings show that toppling is the dominant failure type accounting for high-risk rockfall in the cave, with probabilities of 75.26%, 43.07%and 24.82% in the Entry hall, Main hall and Shaft 2, respectively. Unlike Shaft 2 characterized by high risk of the three failure types(32.49%, 24.82% and 50%), the chamber and Shaft 3 passages are not suffering from slope failure. The results also show that the characteristics of rock geostructure considerably influence the development of the cave passages, and four sections of the cave are susceptible to different slope failure types, at varying degrees of risk.
文摘Increase in requirement of hydrosulphuric water for improvement of the population set the task of identification of places of their possible congestion for hydrogeological service. Earlier detection of such congestions was accidental at well-drilling of different function. Therefore, development of new methodical approaches of search and allocation of perspective zones of their formation was required. It was for this purpose necessary to study in what conditions and what factors have an impact on formation of underground hydrosulphuric water. So far, definition of communication attempts only with separate geochemical signs was known. Results of studying of influence on formations of hydrosulphuric water of such factors as lithologic and facial in combination with oil-and-gas content, the geological and structural and hydrodynamic mode are given in this work. It is established that the main sign for formation of hydrosulphuric water is existence of evaporite thickness and hydrocarbon congestions. Besides, it is shown that small depth (up to 2 km) of their bedding has to be an indispensable condition and existence of explosive violation on which there has to be a water infiltration (a geological and structural factor). In the Surkhandarya region, the hydrodynamic mode caused by inclined bedding of aquifers was also one of essential factors. Active water is an exchange process with washing away (oxidation) sulfate of the containing thicknesses and subsequently, its restoration in interaction with hydrocarbons with formation of hydrosulphuric water is described. The technique is developed and the expected card of perspective zones of formation of hydrosulphuric water is constructed.
基金the support of the European Commission via the Marie Skłodowska-Curie Innovative Training Networks(ITN-ETN)project TERRE’Training Engineers and Researchers to Rethink Geotechnical Engineering for a Low Carbon Future’(H2020-MSCA-ITN-2015-675762).
文摘Energy geostructures(EGs)employ heat exchangers embedded in concrete geostructures,such as piles,walls,tunnels,and sewers.In this study,energy walls(EWs)are studied with an emphasis on the following objectives:(1)to understand the fundamentals of hydrothermal interactions acting in the vicinity of EWs caused by groundwater seepage in saturated soil;(2)to highlight hydraulically induced thermal effects and their consequences on the thermal performance of EWs.Extensive three-dimensional hydrothermal finite element analyses are performed considering two groundwater flow conditions:perpendicular and parallel to the EW.The thermal activation of the geostructure locally modifies the flownet with respect to the non-isothermal case because of the temperature dependency of the water properties.Mutual interactions between seepage directions and thermal activation are analyzed.Remarkable thermal interactions are detected within the heat exchangers.The thermal behavior of EGs is highly affected by an incorrect evaluation of the hydraulically induced thermal effects,which may result in an overestimation of the thermal behavior.Conversely,an efficient thermal design,which considers such interactions,may increase the thermal potential of EGs.