Pulsed breakdown of dry air at ambient pressure has been investigated in the point-plane geometry, using repetitive nanosecond pulses with 10 ns risetime, 20-30 ns duration, and up to 100 kV amplitude. A major concern...Pulsed breakdown of dry air at ambient pressure has been investigated in the point-plane geometry, using repetitive nanosecond pulses with 10 ns risetime, 20-30 ns duration, and up to 100 kV amplitude. A major concern in this paper is to study the dependence of breakdown strength on the point-electrode polarity. Applied voltage, breakdown current and repetitive stressing time are measured under the experimental conditions of some variables including pulse voltage peak, gap spacing and repetition rate. The results show that increasing the E-field strength can decrease breakdown time lag, repetitive stressing time and the number of applied pulses as expected. However, compared with the traditional polarity dependence it is weakened and not significant in the repetitive nanosecond-pulse breakdown. The ambiguous polarity dependence in the experimental study is involved with an accumulation effect of residual charges and metastable states. Moreover, it is suggested that the reactions associated with the detachment of negative ions and impact deactivation of metastable species could provide a source of primary initiating electrons for breakdown.展开更多
Changes in refractive index and the corresponding changes in the characteristics of an optical waveguide in enabling propagation of light are the basis for many modern silicon photonic devices. Optical properties of t...Changes in refractive index and the corresponding changes in the characteristics of an optical waveguide in enabling propagation of light are the basis for many modern silicon photonic devices. Optical properties of these active nanoscale waveguides are sensitive to the little changes in geometry, external injection/biasing, and doping profiles, and can be crucial in design and manufacturing processes. This paper brings the active silicon waveguide for complete characterization of various distinctive guiding parameters, including perturbation in real and imaginary refractive index, mode loss, group velocity dispersion, and bending loss, which can be instrumental in developing optimal design specifications for various application-centric active silicon waveguides.展开更多
As one kind of key lightweight components with enormous quantities and diversities, the bent tubular parts have attracted in- creasing applications in aerospace, automobile, etc. Thus, how the inevitable springback be...As one kind of key lightweight components with enormous quantities and diversities, the bent tubular parts have attracted in- creasing applications in aerospace, automobile, etc. Thus, how the inevitable springback behaves under different bending specifications should be fully addressed to efficiently achieve the precision forming of various bent tubes. Taking the medium strength thin-walled 6061-T4 Al-alloy tube as the objective, via the deformation theory of plasticity, explicit/implicit FE method and experimental approaches, we explored and clarified the nonlinear springback rules of the tubes and corresponding mechanisms in universal rotary draw bending regarding angular springback and radius growth by deliberately changing the tube diameter D and wall thickness t. The geometry dependent springback behaviors of thin-walled tube upon cold bending are thus revealed: 1) With the increasing of D, the tangent tensile strain increases and the proportional coefficient decreases, which causes the angular springback to decrease, while the radius springback increases due to the larger bending radius. 2) With the increasing of t, the tangent tensile strain decreases and the proportional coefficient increases, resulting in the increase of both angular springback and radius springback. 3) Under the same D/t, the angular springback varies little, while the radius springback increases with the larger diameter D. 4) The D/t can be used as a reasonable nondimensional index to evaluate the springback angle; as to the radius growth, the individual effects of the D and t should be considered. 5) The verification of the above results was conducted by experiments and analytical analysis.展开更多
High quality In2S3 kinks were synthesized via a kinetically controlled thermal deposition process and their optoelectronic characteristics were systematically explored. The growth mechanism was attributed to the combi...High quality In2S3 kinks were synthesized via a kinetically controlled thermal deposition process and their optoelectronic characteristics were systematically explored. The growth mechanism was attributed to the combination of kinetic dynamic, crystal fadal energy, and surface roughness. Two trap induced emission bands were evidenced via a low temperature cathodoluminescence (CL) study. Furthermore, the nanowire junctions demonstrated a degenerative photodetection performance, as compared to the straight arms, attributed to a stress-induced extra series resistance measured from the kinked area. The well-controllable shape of the inorganic nanostructures and the detailed exploration of their optoelectronic properties are particularly valuable for their further practical applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50207011 and 50437020).
文摘Pulsed breakdown of dry air at ambient pressure has been investigated in the point-plane geometry, using repetitive nanosecond pulses with 10 ns risetime, 20-30 ns duration, and up to 100 kV amplitude. A major concern in this paper is to study the dependence of breakdown strength on the point-electrode polarity. Applied voltage, breakdown current and repetitive stressing time are measured under the experimental conditions of some variables including pulse voltage peak, gap spacing and repetition rate. The results show that increasing the E-field strength can decrease breakdown time lag, repetitive stressing time and the number of applied pulses as expected. However, compared with the traditional polarity dependence it is weakened and not significant in the repetitive nanosecond-pulse breakdown. The ambiguous polarity dependence in the experimental study is involved with an accumulation effect of residual charges and metastable states. Moreover, it is suggested that the reactions associated with the detachment of negative ions and impact deactivation of metastable species could provide a source of primary initiating electrons for breakdown.
文摘Changes in refractive index and the corresponding changes in the characteristics of an optical waveguide in enabling propagation of light are the basis for many modern silicon photonic devices. Optical properties of these active nanoscale waveguides are sensitive to the little changes in geometry, external injection/biasing, and doping profiles, and can be crucial in design and manufacturing processes. This paper brings the active silicon waveguide for complete characterization of various distinctive guiding parameters, including perturbation in real and imaginary refractive index, mode loss, group velocity dispersion, and bending loss, which can be instrumental in developing optimal design specifications for various application-centric active silicon waveguides.
基金supported by the National Natural Science Foundation of China (Grant No. 50905144)Program for New Century Excellent Talentsin University+2 种基金the fund of the State Key Laboratory of Solidification Processing in NWPUthe Natural Science Basic Research Plan in Shaanxi Province (Grant No. 2011JQ6004)the 111 Project (Grant No.B08040)
文摘As one kind of key lightweight components with enormous quantities and diversities, the bent tubular parts have attracted in- creasing applications in aerospace, automobile, etc. Thus, how the inevitable springback behaves under different bending specifications should be fully addressed to efficiently achieve the precision forming of various bent tubes. Taking the medium strength thin-walled 6061-T4 Al-alloy tube as the objective, via the deformation theory of plasticity, explicit/implicit FE method and experimental approaches, we explored and clarified the nonlinear springback rules of the tubes and corresponding mechanisms in universal rotary draw bending regarding angular springback and radius growth by deliberately changing the tube diameter D and wall thickness t. The geometry dependent springback behaviors of thin-walled tube upon cold bending are thus revealed: 1) With the increasing of D, the tangent tensile strain increases and the proportional coefficient decreases, which causes the angular springback to decrease, while the radius springback increases due to the larger bending radius. 2) With the increasing of t, the tangent tensile strain decreases and the proportional coefficient increases, resulting in the increase of both angular springback and radius springback. 3) Under the same D/t, the angular springback varies little, while the radius springback increases with the larger diameter D. 4) The D/t can be used as a reasonable nondimensional index to evaluate the springback angle; as to the radius growth, the individual effects of the D and t should be considered. 5) The verification of the above results was conducted by experiments and analytical analysis.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21322106, 51472097 and 51402114), National Basic Research Program of China (No. 2015CB932600), Program for HUST Inter- disciplinary Innovation Team (No. 2015ZDTD038) and the Fundamental Research Funds for the Central Uni- versities. The authors thank the Analytical and Testing Centre of Huazhong University of Science and Tech- nology.
文摘High quality In2S3 kinks were synthesized via a kinetically controlled thermal deposition process and their optoelectronic characteristics were systematically explored. The growth mechanism was attributed to the combination of kinetic dynamic, crystal fadal energy, and surface roughness. Two trap induced emission bands were evidenced via a low temperature cathodoluminescence (CL) study. Furthermore, the nanowire junctions demonstrated a degenerative photodetection performance, as compared to the straight arms, attributed to a stress-induced extra series resistance measured from the kinked area. The well-controllable shape of the inorganic nanostructures and the detailed exploration of their optoelectronic properties are particularly valuable for their further practical applications.