期刊文献+
共找到3,635篇文章
< 1 2 182 >
每页显示 20 50 100
Geometric and electronic effects on the performance of a bifunctional Ru2P catalyst in the hydrogenation and acceptorless dehydrogenation of N‐heteroarenes 被引量:1
1
作者 Fangjun Shao Zihao Yao +7 位作者 Yijing Gao Qiang Zhou Zhikang Bao Guilin Zhuang Xing Zhong Chuan Wu Zhongzhe Wei Jianguo Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第7期1185-1194,共10页
The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations bet... The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations between unsaturated and saturated N‐heterocycles affording yields of 98%and 99%,respectively.Moreover,a remarkable enhancement in the reusability of Ru_(2)P/AC was observed compared with other Ru‐based catalysts.According to density functional theory calculations,the superior performance of Ru_(2)P/AC was ascribed to specific synergistic factors,namely geometric and electronic effects induced by P.P greatly reduced the large Ru‐Ru ensembles and finely modified the electronic structures,leading to a low reaction barrier and high desorption ability of the catalyst,further boosting the hydrogenation and acceptorless dehydrogenation processes. 展开更多
关键词 Ruthenium phosphide Bifunction catalyst Reaction mechanism geometric and electronic effects HYDROGENATION Acceptorless dehydrogenation
在线阅读 下载PDF
Synergistic effects of Fe single atoms and Fe nanoparticles modulating the electronic configuration for photocatalytic water treatment
2
作者 Min Dai Ziwen Zhao +4 位作者 Yaru Li Shuaiqi Zhang Jingyun Fang Chun Hu Fan Li 《Journal of Materials Science & Technology》 2025年第16期91-100,共10页
The introduction of metal single atoms(SAs)and nanoparticles(NPs)are effective approaches to mod-ify electronic configuration of semiconductors,whereas recognizing the synergistic effects of metal SAs and NPs are stil... The introduction of metal single atoms(SAs)and nanoparticles(NPs)are effective approaches to mod-ify electronic configuration of semiconductors,whereas recognizing the synergistic effects of metal SAs and NPs are still challenging in photocatalytic water purification.Herein,a general strategy is achieved by subsequentially anchoring Fe SAs and Fe NPs in graphitic carbon nitride.The modification of Fe SAs and Fe NPs improves the energy band structure and constructs a gradient charge polarization,directly expanding the optical absorption range and facilitating the efficient separation and transfer of charge car-riers.With the assistance of the gradient charge polarization,pollutants are readily oxidated by h+,which strengthens the continuous reduction of O2 on Fe NPs for pollutant oxidation in water.This work rein-forces the synergistic effect of SAs and NPs on electronic configuration modulation at the atomic level,which exhibits great potential for the construction of an efficient and sustainable water purification sys-tem. 展开更多
关键词 Single atoms NANOPARTICLES Synergistic effects PHOTOCATALYSIS electronic configuration modulation
原文传递
Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization:Synergy effects of weakπ-πinteraction,steric bulk,and electronic tuning
3
作者 Heng Gao Zhaocong Cheng +5 位作者 Guangshui Tu Zonglin Qiu Xieyi Xiao Haotian Zhou Handou Zheng Haiyang Gao 《Chinese Chemical Letters》 2025年第5期336-341,共6页
A series of“half-sandwich”bis(imino)pyridyl iron complexes with a substituted 8-(p-Xphenyl)naphthylamine(X=OMe,Me,CF3)was designed and synthesized by combining weakπ-πinteraction with steric and electronic tunings... A series of“half-sandwich”bis(imino)pyridyl iron complexes with a substituted 8-(p-Xphenyl)naphthylamine(X=OMe,Me,CF3)was designed and synthesized by combining weakπ-πinteraction with steric and electronic tunings.The weak noncovalentπ-πinteraction as well as the steric and electronic effects of bis(imino)pyridyl iron complexes were identified by experimental analyses and calculations.The roles of weakπ-πinteraction,steric bulk,and electronic tuning on the ethylene polymerization performance of bis(imino)pyridyl iron catalysts were studied in detail.The combination ofπ-πinteraction with steric and electronic tunings can access to thermally stable bis(imino)pyridyl iron at 130°C. 展开更多
关键词 Bis(imino)pyridyl iron π-πInteraction Steric effect electronic effect Ethylene polymerization
原文传递
THE TRANSVERSAL GEOMETRIC EFFECTS IN A FREE ELECTRON LASER
4
作者 应润杰 《Journal of Electronics(China)》 1989年第2期117-128,共12页
The effects of a beam thickness and a conducting wall in a free electron laser with a linearlypolarized wiggler magnetic field and an axial magnetic field are investigated within the framework of fluid-Maxwell equatio... The effects of a beam thickness and a conducting wall in a free electron laser with a linearlypolarized wiggler magnetic field and an axial magnetic field are investigated within the framework of fluid-Maxwell equations.The growth rate of free electron laser instability is obtained,in which the nonlinear bulkand surface current density are simultaneously considered.The numerical calculations indicate that the bulkcoupling is dominant.There is an optimum beam thickness and separation between the conducting walls forwhich the growth rate is maximum. 展开更多
关键词 Free electron LASER TRANSVERSE geometric effect STABILITY
在线阅读 下载PDF
Quantum-Size FeS_(2) with Delocalized Electronic Regions Enable High-Performance Sodium-Ion Batteries Across Wide Temperatures
5
作者 Tianlin Li Danyang Zhao +8 位作者 Meiyu Shi Chao Tian Jie Yi Qing Yin Yongzhi Li Bin Xiao Jiqiu Qi Peng Cao Yanwei Sui 《Nano-Micro Letters》 2026年第1期355-374,共20页
Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique ... Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique advantages of charge delocalization and enrich uncoordinated electrons and short-range transfer kinetics,which are crucial to achieve rapid low-temperature charge transfer and high-temperature interface stability.Herein,a quantum-scale FeS_(2) loaded on three-dimensional Ti_(3)C_(2) MXene skeletons(FeS_(2) QD/MXene)fabricated as SIBs anode,demonstrating impressive performance under wide-temperature conditions(−35 to 65).The theoretical calculations combined with experimental characterization interprets that the unsaturated coordination edges of FeS_(2) QD can induce delocalized electronic regions,which reduces electrostatic potential and significantly facilitates efficient Na+diffusion across a broad temperature range.Moreover,the Ti_(3)C_(2) skeleton reinforces structural integrity via Fe-O-Ti bonding,while enabling excellent dispersion of FeS_(2) QD.As expected,FeS_(2) QD/MXene anode harvests capacities of 255.2 and 424.9 mAh g^(−1) at 0.1 A g^(−1) under−35 and 65,and the energy density of FeS_(2) QD/MXene//NVP full cell can reach to 162.4 Wh kg^(−1) at−35,highlighting its practical potential for wide-temperatures conditions.This work extends the uncoordinated regions induced by quantum-size effects for exceptional Na^(+)ion storage and diffusion performance at wide-temperatures environment. 展开更多
关键词 Quantum-size effect electron delocalization Efficient short-range transfer kinetics Wide-temperature Sodium-ion batteries
在线阅读 下载PDF
Role of Multi-Electron and Multi-Orbital Effects in High-Order Harmonic Generation of Benzonitrile Molecules
6
作者 Man Xing Jun Wang +1 位作者 Xi Zhao Shushan Zhou 《Chinese Physics Letters》 2025年第4期43-49,共7页
Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and e... Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and exchangecorrelation effects but also the interference between the dynamics of different electron wave packets. 展开更多
关键词 electron wave packets multi electron effects multi orbital effects high order harmonic generation benzonitrile molecules exchangecorrelation effects complex moleculesheremulti electron interference dynamics
原文传递
Level-Set-Based Topology Optimization of a Geometrically Nonlinear Structure Considering Thermo-mechanical Coupling Effect
7
作者 Sujun Wang An Xu Ruohong Zhao 《Acta Mechanica Solida Sinica》 2025年第1期100-114,共15页
This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element couplin... This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings. 展开更多
关键词 Topology optimization geometric nonlinearity Thermo-mechanical coupling effect Level set method Multiple constraints
原文传递
Proximity electronic effect of adjacent Ni Site enhances compatibility of hydrogenation and deoxygenation over Cu Site to boost nitrate electroreduction to ammonia
8
作者 Xue-Feng Cheng Qing Liu +5 位作者 Qi-Meng Sun Huilong Dong Dong-Yun Chen Ying Zheng Qing-Feng Xu Jian-Mei Lu 《Chinese Journal of Catalysis》 2025年第3期285-298,共14页
Electrocatalytic conversion of nitrate to ammonia(NITRR)can simultaneously achieve the removal of nitrate and the synthesis of value-added ammonia,a promising candidate to replace Haber-Bosch process with low carbon d... Electrocatalytic conversion of nitrate to ammonia(NITRR)can simultaneously achieve the removal of nitrate and the synthesis of value-added ammonia,a promising candidate to replace Haber-Bosch process with low carbon dioxide emissions.However,high hydrogenation energy barrier for*NO intermediates and insufficient supply of active hydrogen cause slow hydrogenation process,and further result in low efficiency of nitrate conversion and ammonia synthesis.Herein,a series of tandem catalysts,one-dimensional coordination polymers(1D CCPs)with dual sites are synthesized and obtained 190.4 mg h^(-1)mgcat^(-1)ammonia production rate with Faradaic efficiency of 97.16%,outperforming to the most of recent reported catalysts.The catalytic performances are well-maintained even after a long-term stability test of 1200 h,laying the foundation for practical applications.Density functional theory results reveal that the stationary adsorbed*NO on Ni site induced proximity electronic effect could reduce the energy barrier for hydrogenation of*NO intermediates over Cu site.In addition,the Ni site in the dual sites 1D CCPs is conducive to generating active hydrogen,providing rich proton source to boost the hydrogenation of*NO,and further enhancing the compatibility of deoxygenation and hydrogenation process.Our work paves a new insight into the mechanism of NITRR process and will inspire more research interests in exploring the proximity electronic effect in catalytic process. 展开更多
关键词 ELECTROCATALYSIS Ammonia synthesis Nitrate reduction Proximity electronic effect Dual sites
在线阅读 下载PDF
Electronic coupling effect optimized FeOOH nanosheets to enable high-performance Ni-Fe battery
9
作者 Fan Yang Ruiwang Zhang +2 位作者 Xunwei Ji Shiwei Lin Xihong Lu 《Journal of Materials Science & Technology》 2025年第24期315-321,共7页
Aqueous rechargeable Ni-Fe batteries exhibit unique advantages in large-scale energy storage thanks to their affordability,safety,and reliability.However,their limited energy density and Coulombic efficiency stem from... Aqueous rechargeable Ni-Fe batteries exhibit unique advantages in large-scale energy storage thanks to their affordability,safety,and reliability.However,their limited energy density and Coulombic efficiency stem from unfavorable OH^(−)adsorption capability and low electrochemical activity of Fe sites,result in electrode kinetic delays for Fe anodes.Here,we report Mn and S co-modified FeOOH(MSFF)nanosheets as an advanced anode in Ni-Fe batteries,synthesized from a facile one-step surface-redox-etching method at room temperature.Based on the strong electronic coupling effect between Mn and S atoms,such MSFF anode presents fast electron transport capability,enhanced OH^(−)-adsorption capability,and redox reactivity.Specifically,the MSFF anode can achieve a high areal capacity of 2 mAh cm^(−2)at 10 mA cm^(−2),which retains a staggering 96%of the initial capacity after undergoing 9000 cycles at a higher current density of 30 mA cm^(−2).In addition,the assembled Ni-Fe battery can provide a capacity of 0.85 mAh cm^(−2)at 16 mA cm^(−2),significantly outperforming most recently reported aqueous rechargeable batteries.This work may offer an innovative and feasible approach for modulating the local electronic structure of high-performance Ni-Fe battery electrode materials. 展开更多
关键词 electronic coupling effect Mn S co-modified FeOOH Fe anode Ni-Fe battery
原文传递
Synergistic effects of CeO_(2)/Cu_(2)O on CO catalytic oxidation:Electronic interaction and oxygen defect 被引量:3
10
作者 Chengyan Ge Jingfang Sun +3 位作者 Qing Tong Weixin Zou Lulu Li Lin Dong 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第8期1211-1218,共8页
For CO catalytic oxidation,Cu and Ce species are of great importance,between which the synergistic effect is worth investigating.In this work,CeO_(2)/Cu_(2)O with Cu_(2)O{111}and{100}planes were comparatively explored... For CO catalytic oxidation,Cu and Ce species are of great importance,between which the synergistic effect is worth investigating.In this work,CeO_(2)/Cu_(2)O with Cu_(2)O{111}and{100}planes were comparatively explored on CO catalytic oxidation to reveal the effects of interfacial electronic interactions and oxygen defects.The activity result demonstrates that CeO_(2)/o-Cu_(2)O{111}has superior performance compared with CeO_(2)/c-Cu_(2)O{100}.Credit to the coordination unsaturated copper atoms(Cu_(CUS))on oCu_(2)O{111}surface,the interfacial electronic interactions on CeO_(2)/o-Cu_(2)O{111}are more obvious than those on CeO_(2)/c-Cu_(2)O{100},leading to richer oxygen defect generation,better redox and activation abilities of CO and O_(2)reactants.Furthermore,the reaction mechanism of CeO_(2)/o-Cu_(2)O{111}on CO oxidation is revealed,i.e.,CO and O_(2)are adsorbed on the Cucus on Cu_(2)O{111}and oxygen defect of CeO_(2),respectively,and then synergistically promote the CO oxidation to CO_(2).The work sheds light on the designing optimized ceria and copper-based catalysts and the mechanism of CO oxidation. 展开更多
关键词 CeO_(2)/Cu_(2)O{111}{100} Synergistic effect Interfacial electronic interaction Oxygen defect CO oxidation Rare earths
原文传递
A Density Functional Theory Study of the Geometric and Electronic Structure of MgF_2 (110) Surface
11
作者 王丽平 HAN Peide +2 位作者 ZHANG Caili HAO Yuying 许并社 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期22-25,共4页
Abstract" Ab initio density functional theory (DFT) was employed to study geometric and electronic structure of MgF2 (110) surface. Three different clean surface models have been considered. The results show that... Abstract" Ab initio density functional theory (DFT) was employed to study geometric and electronic structure of MgF2 (110) surface. Three different clean surface models have been considered. The results show that the surface terminated with one-layer F has the smallest relaxation and the lowest surface energy, which indicates this model is the most energetically favorable structure of MgF2(110) surface. Furthermore, the electronic properties are also discussed from the point of density of states and charge density. Analysis of electronic structure shows that the band gap of the surface is significantly narrowed with respect to the bulk. The electrons of the surface exhibit strong locality and larger effective mass. 展开更多
关键词 geometric structure electronic structure STABILITY surface energy first principles
原文传递
Density functional investigations for geometric and electronic properties of In_4M and In_(12)M (M=C,Si,In) clusters
12
作者 李志坚 李锦茴 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期2951-2955,共5页
First-principle calculations are performed to study geometric and electronic properties of both neutral and anionic In4M and In12M (M = C, Si, In) clusters. In4C and In4Si are found to be tetrahedral molecules. The ... First-principle calculations are performed to study geometric and electronic properties of both neutral and anionic In4M and In12M (M = C, Si, In) clusters. In4C and In4Si are found to be tetrahedral molecules. The icosahedral structure is found to be unfavourable for In12M. The most stable structure for In12C is a distorted buckled biplanar structure while for In12Si it is of an In-cage with the Si located in the centre. Charge effect on the structure of In12M is discussed. In4C has a significantly large binding energy and an energy gap between the highest-occupied molecularorbital level and the lowest unoccupied molecular-orbital level, a low electron affinity, and a high ionization potential, which are the characters of a magic cluster, enriching the family of doped-group-IIIA metal clusters for cluster-assembled materials. 展开更多
关键词 atomic cluster geometric configuration electronic properties STABILITY
原文传递
Geometric,stable and electronic properties of Au_(n-2)Y_2(n=3-8) clusters
13
作者 齐凯天 毛华平 +1 位作者 王红艳 盛勇 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期293-297,共5页
Employing first-principles methods, based on the density function theory, and using the LANL2DZ basis sets, the ground-state geometric, the stable and the electronic properties of Aun-2Y2 clusters are investigated in ... Employing first-principles methods, based on the density function theory, and using the LANL2DZ basis sets, the ground-state geometric, the stable and the electronic properties of Aun-2Y2 clusters are investigated in this paper. Meanwhile, the differences in property among pure gold clusters, pure yttrium clusters, gold clusters doped with one yttrium atom, and gold clusters doped with two yttrium atoms are studied. We find that when gold clusters are doped by two yttrium atoms, the odd-even oscillatory behaviours of Aun-1Y and Aun disappear. The properties of Aun-2Y2 clusters are close to those of pure yttrium clusters. 展开更多
关键词 Aun-2Y2 clusters density function theory geometric property electronic property
原文传递
Synthesis of linear and V-shaped oligo(phenylene ethynylene) derivatives:Geometric effects on photophysical properties
14
作者 Yuan, Si Chun Han, Shu Liang +1 位作者 Ge, Xing Wang, Hui Chuan 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第1期97-100,共4页
A series of linear and V-shaped oligo(phenylene ethynylene) derivatives 1-3 were synthesized through sequent Sonogashira coupling and propargyl alcohol deprotection reaction in high yields.The alkoxy chains(i.e.,n-hex... A series of linear and V-shaped oligo(phenylene ethynylene) derivatives 1-3 were synthesized through sequent Sonogashira coupling and propargyl alcohol deprotection reaction in high yields.The alkoxy chains(i.e.,n-hexyloxy groups) were introduced to assure good solubility of compounds 1-3 in common solvents.The photophysical properties of 1-3 in solution depend strongly on the geometries of these compounds. 展开更多
关键词 Sonogashira coupling Oligo(phenylene ethynylene) derivatives geometric effect Photophysical property
在线阅读 下载PDF
THE COUPLED EFFECTS OF MECHANICAL DEFORMATION AND ELECTRONIC PROPERTIES IN CARBON NANOTUBES 被引量:6
15
作者 郭万林 郭宇锋 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第2期192-198,共7页
Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can ... Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can cause charge polarization and significant geometric deformation in metallic and semi-metallic carbon nanotubes.The electric induced axial tension ratio can be up to 10% in the armchair tube and 8.5% in the zigzag tube.Pure external applied load has little effect on charge distribution,but indeed influences the energy gap.Tensile load leads to a narrower energy gap and compressive load increases the gap.When the CNT is tensioned under an external electric field,the effect of mechanical load on the electronic structures of the CNT becomes significant,and the applied electric field may reduce the critical mechanical tension load remarkably.Size effects are also discussed. 展开更多
关键词 quantum mechanics quantum-molecular dynamics single-walled carbon nanotube coupled effect mechanical-electronic property
在线阅读 下载PDF
Piezoelectric effects and electronic structures of InAs/GaAs quantum dots grown along (111) and (011) directions
16
作者 赵伟 俞重远 刘玉敏 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第6期482-486,共5页
Piezoelectric effects and electronic structures of InAs/GaAs quantum dots grown along (111) and (011) directions are investigated in this paper. The finite element method is used. Electronic energy levels are calc... Piezoelectric effects and electronic structures of InAs/GaAs quantum dots grown along (111) and (011) directions are investigated in this paper. The finite element method is used. Electronic energy levels are calculated by solving the three-dimensional effective mass Schrodinger equation including a strain modified confinement potential and piezoelectric effects. The difference in electronic structure between quantum dots grown along the (111) direction and the (011) direction are compared. The cubic and truncated pyramidal shaped quantum dots are adopted. 展开更多
关键词 quantum dot electronic structure piezoelectric effect
原文传递
ELECTRONIC EFFECTS OF POLYFLUORINATED SUBSTITUENTS ON THE POLYMERIZATION AND THE PROPERTIES OF POLYTHIOPHENES
17
作者 张旭庆 沈学明 +2 位作者 杨士勇 陆伟 张景云 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1997年第1期15-23,共9页
Three series of polythiophenes containing fluoroalkoxy and fluoroether substituents were prepared by electrochemical polymerization. The effect of substituents with fluoroalkoxy or ether functional groups on the elect... Three series of polythiophenes containing fluoroalkoxy and fluoroether substituents were prepared by electrochemical polymerization. The effect of substituents with fluoroalkoxy or ether functional groups on the electrochemical polymerization of thiophene monomers and properties of the obtained polymers were analyzed. The introduction of a fluoroether functional group at the 3-position of the thiophene ring leads to an increase of the oxidation potential of the monomer and to a decrease of the conductivity of the resulting polymers, even with the use of a CH2 group as spacer. Conversely, the presence of an oxygen atom directly at the 3-position of the thiophene ring, which offsets the negative withdrawing effect of fluoroalkyl groups, facilitates the synthesis of highly conducting polythiophenes. 展开更多
关键词 electronic effect electrochemical polymerization polythiophene polyfluorinated substituent
在线阅读 下载PDF
Electronic structures and edge effects of Ga_2S_2 nanoribbons
18
作者 王宝基 李晓华 +2 位作者 张利伟 王国东 柯三黄 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期308-313,共6页
Ab initio density functional theory calculations are carried out to predict the electronic properties and relative stability of gallium sulfide nanoribbons(Ga2S2-NRs) with either zigzag- or armchair-terminated edges. ... Ab initio density functional theory calculations are carried out to predict the electronic properties and relative stability of gallium sulfide nanoribbons(Ga2S2-NRs) with either zigzag- or armchair-terminated edges. It is found that the electronic properties of the nanoribbons are very sensitive to the edge structure. The zigzag nanoribbons(Ga2S2-ZNRs)are ferromagnetic(FM) metallic with spin-polarized edge states regardless of the H-passivation, whereas the bare armchair ones(Ga2S2-ANRs) are semiconducting with an indirect band gap. This band gap exhibits an oscillation behavior as the width increases and finally converges to a constant value. Similar behavior is also found in H-saturated Ga2S2-ANRs,although the band gap converges to a larger value. The relative stabilities of the bare ANRs and ZNRs are investigated by calculating their binding energies. It is found that for a similar width the ANRs are more stable than the ZNRs, and both are more stable than some Ga2S2nanoclusters with stable configurations. 展开更多
关键词 density functional theory Ga_2S_2 nanoribbon electronic structure edge effect
原文传递
The Spatial and Electronic Effects of Substituent Groups on the Thermal Curing of Bio-Based Benzoxazines
19
作者 Rumeng Li Guozhu Zhan +4 位作者 Qi Ma Yunhe Yang Xiaoyun Liu Yitong Zhang Qixin Zhuang 《Journal of Renewable Materials》 SCIE EI 2021年第12期2093-2117,共25页
To explore the influence of substituent groups on thermally induced curing,eight new bio-based benzoxazines containing different substituent groups with different electron negativity and volumes were synthesized.The t... To explore the influence of substituent groups on thermally induced curing,eight new bio-based benzoxazines containing different substituent groups with different electron negativity and volumes were synthesized.The thermal curing of these bio-based benzoxazines was studied in detail.Combined with the curing reaction kinetics,simulation and calculation of Highest Occupied Molecular and Lowest Unoccupied Molecular values,the spatial and electronic effects of different substituent groups on the curing of benzoxazine was explored.It was found that when the substituent was located at the position directly connected to the N atom,the steric hindrance effect of the group was dominant.When the substituent group was located on the benzene ring connected to the O atom,both the electronic effect and the spatial effect influenced the curing of benzoxazine.When an electron-withdrawing group was connected ortho position to the O atom,the curing reaction was promoted due to the decreased electron cloud density of O-on the oxazine ring,making the C-O bond easier to break.When an electron-donating group was connected to the meta position of the O atom it also promoted the curing reaction,possibly because it increased the electron cloud density of the+CH2 reaction site and thereby facilitated electrophilic substitution via attack of+CH2 on the cross linking reaction centre.This work provides a deeper understanding of how spatial and electronic effects of substituents affect the curing of benzoxazine. 展开更多
关键词 BENZOXAZINE spatial effects electronic effects bio-based
在线阅读 下载PDF
Carbonate-induced enhancement of phenols degradation in CuS/peroxymonosulfate system: A clear correlation between this enhancement and electronic effects of phenols substituents
20
作者 Xiaobo Wang Yu Zhou +2 位作者 Nan Wang Jindong Zhang Lihua Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第7期139-151,共13页
This study investigated the enhancement effects of dissolved carbonates on the peroxymonosulfate-based advanced oxidation process with CuS as a catalyst.It was found that the added CO_(3)^(2−)increased both the cataly... This study investigated the enhancement effects of dissolved carbonates on the peroxymonosulfate-based advanced oxidation process with CuS as a catalyst.It was found that the added CO_(3)^(2−)increased both the catalytic activity and the stability of the catalyst.Under optimized reaction conditions in the presence of CO_(3)^(2−),the degradation removal of 4-methylphenol(4-MP)within 2 min reached 100%,and this was maintained in consecutivemulti-cycle experiments.The degradation rate constant of 4-MP was 2.159 min^(−1),being 685%greater than that in the absence of CO_(3)^(2−)(0.315 min−1).The comparison of dominated active species and 4-MP degradation pathways in both CO_(3)^(2−)-free and CO_(3)^(2−)-containing systems suggested thatmore CO_(3)·^(−)/^(1)O_(2) was produced in the case of CO_(3)^(2−)deducing an electron transfer medium,which tending to react with electron-richmoieties.Meanwhile,Characterization by X-ray photoelectron spectroscopic and cyclic voltammetrymeasurement verified CO_(3)^(2−)enabled the effective reduction of Cu^(2+)to Cu^(+).By investigating the degradation of 11 phenolics with different substituents,the dependence of degradation kinetic rate constant of the phenolics on their chemical structures indicated that there was a good linear relationship between the Hammett constantsσp of the aromatic phenolics and the logarithm of k in the CO_(3)^(2−)-containing system.This work provides a new strategy for efficient removal of electron-rich moieties under the driving of carbonate being widely present in actual water bodies. 展开更多
关键词 CARBONATES ENHANCEMENT Catalytic degradation Phenolic pollutants electronic effects
原文传递
上一页 1 2 182 下一页 到第
使用帮助 返回顶部