期刊文献+
共找到2,814篇文章
< 1 2 141 >
每页显示 20 50 100
Sparse Planar Retrodirective Antenna Array Using Improved Adaptive Genetic Algorithm 被引量:3
1
作者 Feng-Ge Hu Jian-Hua Zhang Li-Ye Fang 《Journal of Electronic Science and Technology》 CAS 2011年第3期265-269,共5页
An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach.... An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach. This algorithm has been validated to be superior to the simple genetic algorithm (SGA) by a complicated binary testing function. Then the proposed algorithm is applied to optimizing the planar retrodirective array to reduce the cost of the hardware. The fitness function is discussed in the optimization example. After optimization, the sparse planar retrodirective antenna array keeps excellent retrodirectivity, while the array architecture has been simplified by 34%. The optimized antenna array can replace uniform full array effectively. Results show that this work will gain more engineering benefits in practice. 展开更多
关键词 Index Terms adaptive genetic algorithm phase conjugation retrodirective antenna array sparse array.
在线阅读 下载PDF
Method for Fault Feature Selection for a Baler Gearbox Based on an Improved Adaptive Genetic Algorithm 被引量:1
2
作者 Bin Ren Dong Bai +2 位作者 Zhanpu Xue Hu Xie Hao Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期312-323,共12页
The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.Th... The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices. 展开更多
关键词 Fault diagnosis Feature selection Attribute reduction Improved adaptive genetic algorithm
在线阅读 下载PDF
Time-optimal trajectory planning based on improved adaptive genetic algorithm
3
作者 孙农亮 王艳君 《Journal of Measurement Science and Instrumentation》 CAS 2012年第2期103-108,共6页
This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined ... This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability. 展开更多
关键词 time-optimal trajectory planning(TOTP) improved adaptive genetic algorithm(IAGA) cubic triangular Bezier spline(CTBS)
在线阅读 下载PDF
A Linear Domain System Identification for Small Unmanned Aerial Rotorcraft Based on Adaptive Genetic Algorithm 被引量:12
4
作者 Xusheng Lei,Yuhu Du School of the Instrumentation Science and Opto-Electronic Engineering,Beihang University,Beijing 100191,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期142-149,共8页
This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the... This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests. 展开更多
关键词 small unmanned aerial rotorcraft dynamic space model model identification adaptive genetic algorithm
在线阅读 下载PDF
Optimization of linear induction machines based on a novel adaptive genetic algorithm
5
作者 庄英超 余海涛 +1 位作者 夏军 胡敏强 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期203-207,共5页
In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps... In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps to produce a uniform initial population is used to enhance the optimization efficiency of the genetic algorithm. The crossover and mutation probabilities are improved by using the function of sigmoid and they can be adjusted nonlinearly between average fitness and maximal fitness with individual fitness. Based on the analyses of different structures between the LIM and the rotary induction motor (RIM) and referring to the analysis method of the RIM, the steady-state characteristics of the LIM that considers the end effects of the LIM is calculated and the optimal design model of the thrust-power ratio index is also presented. Through the comparison between the optimal scheme and the old scheme, the thrust-power ratio index of the LIM is obviously increased and the validity of the NAGA is proved. 展开更多
关键词 adaptive genetic algorithm linear induction machine uniform design
在线阅读 下载PDF
An adaptive genetic algorithm with diversity-guided mutation and its global convergence property 被引量:9
6
作者 李枚毅 蔡自兴 孙国荣 《Journal of Central South University of Technology》 EI 2004年第3期323-327,共5页
An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive gene... An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten. 展开更多
关键词 diversity-guided mutation adaptive genetic algorithm Markov chain global convergence
在线阅读 下载PDF
Fuzzy adaptive genetic algorithm based on auto-regulating fuzzy rules 被引量:6
7
作者 喻寿益 邝溯琼 《Journal of Central South University》 SCIE EI CAS 2010年第1期123-128,共6页
There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fi... There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search. 展开更多
关键词 adaptive genetic algorithm fuzzy rules auto-regulating crossover probability adjustment
在线阅读 下载PDF
Estimation of Kinetic Parameters for Autocatalytic Oxidation of Cyclohexane Based on a Modified Adaptive Genetic Algorithm 被引量:2
8
作者 刘平乐 邹丽珊 +2 位作者 罗和安 王良芥 郑金华 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第1期49-54,共6页
A modified genetic algorithm of multiple selection strategies, crossover strategies and adaptive operator is constructed, and it is used to estimate the kinetic parameters in autocatalytic oxidation of cyclohexane. Th... A modified genetic algorithm of multiple selection strategies, crossover strategies and adaptive operator is constructed, and it is used to estimate the kinetic parameters in autocatalytic oxidation of cyclohexane. The influences of selection strategy, crossover strategy and mutation strategy on algorithm performance are discussed. This algorithm with a specially designed adaptive operator avoids the problem of local optimum usually associated with using standard genetic algorithm and simplex method. The kinetic parameters obtained from the modified genetic algorithm are credible and the calculation results using these parameters agree well with experimental data. Furthermore, a new kinetic model of cyclohexane autocatalytic oxidation is established and the kinetic parameters are estimated by using the modified genetic algorithm. 展开更多
关键词 adaptive genetic algorithm CYCLOHEXANE autocatalytic oxidation reaction kinetics
在线阅读 下载PDF
An improved self-calibration approach based on adaptive genetic algorithm for position-based visual servo 被引量:1
9
作者 Ding LIU Xiongjun WU Yanxi YANG 《控制理论与应用(英文版)》 EI 2008年第3期246-252,共7页
An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the ... An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the positionbased visual servo technique which exploits the singular value property of the essential matrix. Specifically, a suitable dynamic online cost function is generated according to the property of the three singular values. The visual servo process is carried out simultaneous to the dynamic self-calibration, and then the cost function is minimized using the adaptive genetic algorithm instead of the gradient descent method in G. Chesi's approach. Moreover, this method overcomes the limitation that the initial parameters must be selected close to the true value, which is not constant in many cases. It is not necessary to know exactly the camera intrinsic parameters when using our approach, instead, coarse coding bounds of the five parameters are enough for the algorithm, which can be done once and for all off-line. Besides, this algorithm does not require knowledge of the 3D model of the object. Simulation experiments are carried out and the results demonstrate that the proposed approach provides a fast convergence speed and robustness against unpredictable perturbations of camera parameters, and it is an effective and efficient visual servo algorithm. 展开更多
关键词 Dynamic self-calibration Visual servo adaptive genetic algorithm Parameter optimizing Essential matrix Computer vision
在线阅读 下载PDF
Alternative Fuzzy Cluster Segmentation of Remote Sensing Images Based on Adaptive Genetic Algorithm 被引量:1
10
作者 WANG Jing TANG Jilong +3 位作者 LIU Jibin REN Chunying LIU Xiangnan FENG Jiang 《Chinese Geographical Science》 SCIE CSCD 2009年第1期83-88,共6页
Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich textur... Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm(AGA) and Alternative Fuzzy C-Means(AFCM) . Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased,and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means(FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM. 展开更多
关键词 adaptive genetic algorithm (AGA) Alternative Fuzzy C-Means (AFCM) image segmentation remote sensing
在线阅读 下载PDF
Composition of Web Services of Multi-Population Adaptive Genetic Algorithm Based on Cosine Improvement 被引量:1
11
作者 Siyuan Meng Chuancheng Zhang 《Journal of Computer and Communications》 2021年第6期109-119,共11页
Web quality of service (QoS) awareness requires not only the selection of specific services to complete specific tasks, but also the comprehensive quality of service of the whole web service composition. How to select... Web quality of service (QoS) awareness requires not only the selection of specific services to complete specific tasks, but also the comprehensive quality of service of the whole web service composition. How to select the web service composition with the highest comprehensive QoS is a NP hard problem. In this paper, an improved multi population genetic algorithm is proposed. Cosine adaptive operator is added to the algorithm to avoid premature algorithm caused by improper genetic operator and the disadvantage of destroying excellent individuals in later period. Experimental results show that compared with the common genetic algorithm and multi population genetic algorithm, this algorithm has the advantages of shorter time consumption and higher accuracy, and effectively avoids the loss of effective genes in the population. 展开更多
关键词 Web Service Composition Multi-Population genetic algorithm QOS Cosine Improved adaptive genetic Operator
在线阅读 下载PDF
A New Fuzzy Adaptive Genetic Algorithm 被引量:6
12
作者 房磊 张焕春 经亚枝 《Journal of Electronic Science and Technology of China》 2005年第1期57-59,71,共4页
Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while kee... Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while keeping the overall population size constant. The simulation results of function optimization show that with the proposed algorithm, the phenomenon of premature convergence can be overcome effectively, and a satisfying optimization result is obtained. 展开更多
关键词 adaptive genetic algorithm fuzzy logic controller dynamic parameters control population sizes
在线阅读 下载PDF
Optimal Time-Frequency Atom Search Based on Adaptive Genetic Algorithm 被引量:1
13
作者 郭俊锋 李言俊 张科 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第1期30-35,共6页
Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal pro... Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal processing.A main challenge of the Gaussian chirplet decomposition is the numerical implementation of the matching pursuit,which is an adaptive signal decomposition scheme,and the challenge remains an open research topic.In this paper,a new optimal time-frequency atom search method based on the adaptive genetic algorithm is proposed,aiming to the low precision problem of the traditional methods.Firstly,a discrete formula of finite length time-frequency atom sequence is derived.Secondly,an algorithm based on the adaptive genetic algorithm is described in detail.Finally,a simulation is carried out,and the result displays its validity and stability. 展开更多
关键词 信息处理 有限长度频率 遗传算法 适合性
在线阅读 下载PDF
An adaptive genetic algorithm for solving bilevel linear programming problem
14
作者 王广民 王先甲 +1 位作者 万仲平 贾世会 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第12期1605-1612,共8页
Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this pr... Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this problem. Of all the algorithms, the ge- netic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes maybe infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references. 展开更多
关键词 bilevel linear programming genetic algorithm fitness value adaptive operator probabilities crossover and mutation
在线阅读 下载PDF
Optimal Adaptive Genetic Algorithm Based Hybrid Signcryption Algorithm for Information Security
15
作者 R.Sujatha M.Ramakrishnan +1 位作者 N.Duraipandian B.Ramakrishnan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2015年第5期47-68,共22页
The functions of digital signature and public key encryption are simultaneously fulfilled by signcryption,which is a cryptographic primitive.To securely communicate very large messages,the cryptographic primitive call... The functions of digital signature and public key encryption are simultaneously fulfilled by signcryption,which is a cryptographic primitive.To securely communicate very large messages,the cryptographic primitive called signcryption efficiently implements the same and while most of the public key based systems are suitable for small messages,hybrid encryption(KEM-DEM)provides a competent and practical way.In this paper,we develop a hybrid signcryption technique.The hybrid signcryption is based on the KEM and DEM technique.The KEM algorithm utilizes the KDF technique to encapsulate the symmetric key.The DEM algorithm utilizes the Adaptive Genetic Algorithm based Elliptic curve cryptography algorithm to encrypt the original message.Here,for the security purpose,we introduce the three games and we proved the attackers fail to find the security attributes of our proposed signcryption algorithm.The proposed algorithm is analyzed with Daniel of Service(DOS),Brute Force attack and Man In Middle(MIM)attacks to ensure the secure data transaction. 展开更多
关键词 HYBRID SIGNCRYPTION KEM DEM adaptive genetic algorithm EllipticCurve CRYPTOGRAPHY
在线阅读 下载PDF
An Efficient Improved Adaptive Genetic Algorithm for Training Layered Feedforward Neural Networks
16
作者 Wang Xin-miao Yan Pu-liu Huang Tian-xi 《Wuhan University Journal of Natural Sciences》 CAS 1999年第3期318-318,共1页
Layered feedforward neural network training algorithm based on traditional BP algorithm may lead to entrapment in local optimum, and has the defects such as slow convergent speed and unsatis-fied dynamic character whi... Layered feedforward neural network training algorithm based on traditional BP algorithm may lead to entrapment in local optimum, and has the defects such as slow convergent speed and unsatis-fied dynamic character which reduce the study ability of the network. This paper presents an improved adaptive genetic algorithm (IAGA) for training the neural network efficiently that uses a forward adaptive technique and takes the advantages of the network architecture. The experimental results show that our al-gorithm outperforms BP algorithm, BGA algorithm and AGA algorithm, and the dynamic character,training accuracy and efficiency proved greatly. 展开更多
关键词 neural network genetic algorithm adaptive
在线阅读 下载PDF
Research on Public Traffic Vehicles Dispatch Based on Improved Adaptive Genetic Algorithm
17
作者 Chuan-xiang REN,Zhen LI,Fa-sheng LIU,Chang-chang YIN,Jing-yi CUI (College of Information and Electrical Engineering,Shandong University of Science and Technology,Qingdao 266510,China) 《Journal of Measurement Science and Instrumentation》 CAS 2010年第S1期186-189,198,共5页
Bus dispatching has been studied,and also the bus dispatching model is set up.Then,Genetic Algorithm is adaptively improved in order to avoid premature problem and the slow convergence,and then the keeping optimal str... Bus dispatching has been studied,and also the bus dispatching model is set up.Then,Genetic Algorithm is adaptively improved in order to avoid premature problem and the slow convergence,and then the keeping optimal strategy is used to the Genetic Algorithm,so formed the Improved Adaptive Genetic Algorithm,namely IAGA. Finally,the IAGA is used to optimizing the bus dispatching model,and the results of the simulation indicate IAGA has the higher efficiency than simple GA and is one effective way to optimizing the bus dispatching. 展开更多
关键词 urban public transport bus dispatching genetic algorithms adaptive genetic algorithm
在线阅读 下载PDF
Pre-stack seismic waveform inversion based on adaptive genetic algorithm
18
作者 LIU Sixiu WANG Deli HU Bin 《Global Geology》 2019年第3期188-198,共11页
Pre-stack waveform inversion, by inverting seismic information, can estimate subsurface elastic properties for reservoir characterization, thus effectively guiding exploration. In recent years, nonlinear inversion met... Pre-stack waveform inversion, by inverting seismic information, can estimate subsurface elastic properties for reservoir characterization, thus effectively guiding exploration. In recent years, nonlinear inversion methods, such as standard genetic algorithm, have been extensively adopted in seismic inversion due to its simplicity, versatility, and robustness. However, standard genetic algorithms have some shortcomings, such as slow convergence rate and easiness to fall into local optimum. In order to overcome these problems, the authors present a new adaptive genetic algorithm for seismic inversion, in which the selection adopts regional equilibrium and elite retention strategies are adopted, and adaptive operators are used in the crossover and mutation to implement local search. After applying this method to pre-stack seismic data, it is found that higher quality inversion results can be achieved within reasonable running time. 展开更多
关键词 genetic algorithm adaptive probability REGIONAL EQUILIBRIUM SEISMIC INVERSION
在线阅读 下载PDF
Analysis of Distributed and Adaptive Genetic Algorithm for Mining Interesting Classification Rules
19
作者 YI Yunfei LIN Fang QIN Jun 《现代电子技术》 2008年第10期132-135,138,共5页
Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness funct... Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness function,the selecting,crossover,mutation and migration operator for the DAGA at the same time are designed. 展开更多
关键词 分析方法 分类规则 计算方法 编码 智能系统
在线阅读 下载PDF
A New Neuro-Fuzzy Adaptive Genetic Algorithm
20
作者 ZHU Lili ZHANG Huanchun JING Yazhi(Faculty 302,Nanjing University of Aeronautics and Astronautics,Nanjing 210016 China) 《Journal of Electronic Science and Technology of China》 2003年第1期63-68,共6页
Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to contro... Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to control GA parameters.The self-learning ability of the cerebellar modelariculation controller (CMAC) neural network makes it possible for on-line learning the knowledge onGAs throughout the run.Automatically designing and tuning the fuzzy knowledge-base system,neuro-fuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learningmethod.The Results from initial experiments show a Dynamic Parametric AGA system designed by theproposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a widerange of combinatorial optimization. 展开更多
关键词 genetic algorithm fuzzy logic control CMAC neural network adaptive parameter control
在线阅读 下载PDF
上一页 1 2 141 下一页 到第
使用帮助 返回顶部