期刊文献+
共找到3,424篇文章
< 1 2 172 >
每页显示 20 50 100
Bayesian-based ant colony optimization algorithm for edge detection
1
作者 YU Yongbin ZHONG Yuanjingyang +6 位作者 FENG Xiao WANG Xiangxiang FAVOUR Ekong ZHOU Chen CHENG Man WANG Hao WANG Jingya 《Journal of Systems Engineering and Electronics》 2025年第4期892-902,共11页
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t... Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task. 展开更多
关键词 ant colony optimization(ACO) Bayesian algorithm edge detection transfer function.
在线阅读 下载PDF
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
2
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects Ant colony optimization algorithm Support vector machine Feature extraction RECOGNITION
在线阅读 下载PDF
Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speed, Part Ⅰ–Aerodynamic optimization using genetic, bee colony and gradient descent algorithms 被引量:13
3
作者 Andreea Koreanschi Oliviu Sugar Gabor +5 位作者 Joran Acotto Guillaume Brianchon Gregoire Portier Ruxandra Mihaela Botez Mahmoud Mamou Youssef Mebarki 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期149-163,共15页
In this paper, an ‘in-house' genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm's ... In this paper, an ‘in-house' genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm's performances were studied from the convergence point of view, in accordance with design conditions. The algorithm was compared to two other optimization methods,namely the artificial bee colony and a gradient method, for two optimization objectives, and the results of the optimizations with each of the three methods were plotted on response surfaces obtained with the Monte Carlo method, to show that they were situated in the global optimum region. The optimization results for 16 wind tunnel test cases and 2 objective functions were presented. The 16 cases used for the optimizations were included in the experimental test plan for the morphing wing-tip demonstrator, and the results obtained using the displacements given by the optimizations were evaluated. 展开更多
关键词 Artificial bee colony Airfoil optimization Genetic algorithm Morphing wing optimization
原文传递
Improved ant colony optimization algorithm for the traveling salesman problems 被引量:22
4
作者 Rongwei Gan Qingshun Guo +1 位作者 Huiyou Chang Yang Yi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期329-333,共5页
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo... Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness. 展开更多
关键词 ant colony optimization heuristic algorithm scout ants path evaluation model traveling salesman problem.
在线阅读 下载PDF
Novel Approach to Nonlinear PID Parameter Optimization Using Ant Colony Optimization Algorithm 被引量:12
5
作者 Duan Hai-bin Wang Dao-bo Yu Xiu-fen 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第2期73-78,共6页
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorith... This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response. 展开更多
关键词 Ant colony optimization algorithm PHEROMONE nonlinear PID parameter optimization
在线阅读 下载PDF
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design 被引量:11
6
作者 Zhao Baojiang Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期603-610,共8页
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s... An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully. 展开更多
关键词 neuro-fuzzy controller ant colony algorithm function optimization genetic algorithm inverted pen-dulum system.
在线阅读 下载PDF
Optimization of Air Route Network Nodes to Avoid ″Three Areas″ Based on An Adaptive Ant Colony Algorithm 被引量:9
7
作者 Wang Shijin Li Qingyun +1 位作者 Cao Xi Li Haiyun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第4期469-478,共10页
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct... Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%. 展开更多
关键词 air route network planning three area avoidance optimization of air route network node adaptive ant colony algorithm grid environment
在线阅读 下载PDF
Improved Ant Colony-Genetic Algorithm for Information Transmission Path Optimization in Remanufacturing Service System 被引量:8
8
作者 Lei Wang Xu-Hui Xia +2 位作者 Jian-Hua Cao Xiang Liu Jun-Wei Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期106-117,共12页
The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission ... The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss. 展开更多
关键词 Remanufacturing service Information transmission Path optimization Ant colony algorithm Genetic algorithm
在线阅读 下载PDF
An adaptive ant colony system algorithm for continuous-space optimization problems 被引量:20
9
作者 李艳君 吴铁军 《Journal of Zhejiang University Science》 CSCD 2003年第1期40-46,共7页
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is pr... Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved. 展开更多
关键词 Ant colony algorithm Continuous space optimization Pheromone update strategy
在线阅读 下载PDF
Improved Multi-objective Ant Colony Optimization Algorithm and Its Application in Complex Reasoning 被引量:3
10
作者 WANG Xinqing ZHAO Yang +2 位作者 WANG Dong ZHU Huijie ZHANG Qing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1031-1040,共10页
The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become... The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints.So far,little research has been carried out in this field.This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes.Three optimization objectives are considered simultaneously: maximum probability of average fault,maximum average importance,and minimum average complexity of test.Under the constraints of both known symptoms and the causal relationship among different components,a multi-objective optimization mathematical model is set up,taking minimizing cost of fault reasoning as the target function.Since the problem is non-deterministic polynomial-hard(NP-hard),a modified multi-objective ant colony algorithm is proposed,in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives.At last,a Pareto optimal set is acquired.Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set,through which the final fault causes can be identified according to decision-making demands,thus realize fault reasoning of the multi-constraint and multi-objective complex system.Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model,which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system. 展开更多
关键词 fault reasoning ant colony algorithm Pareto set multi-objective optimization complex system
在线阅读 下载PDF
An effective multi-level algorithm based on ant colony optimization for graph bipartitioning 被引量:3
11
作者 冷明 郁松年 +1 位作者 丁旺 郭强 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期426-432,共7页
Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph... Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph is proposed. During its coarsening phase, an improved matching approach based on the global information of the graph core is developed with its guidance function. During the refinement phase, the vertex gain is exploited as ant's heuristic information and a positive feedback method based on pheromone trails is used to find the global approximate bipartitioning. It is implemented with American National Standards Institute (ANSI) C and compared to MeTiS. The experimental evaluation shows that it performs well and produces encouraging solutions on 18 different graphs benchmarks. 展开更多
关键词 rain-cut GRAPH bipartitioning multi-level algorithm ant colony optimization (ACO)
在线阅读 下载PDF
Codebook design using improved particle swarm optimization based on selection probability of artificial bee colony algorithm 被引量:2
12
作者 浦灵敏 胡宏梅 《Journal of Chongqing University》 CAS 2014年第3期90-98,共9页
In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capabili... In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles. 展开更多
关键词 vector quantization codebook design particle swarm optimization artificial bee colony algorithm
在线阅读 下载PDF
Optimization design of drilling string by screw coal miner based on ant colony algorithm 被引量:3
13
作者 张强 毛君 丁飞 《Journal of Coal Science & Engineering(China)》 2008年第4期686-688,共3页
It took that the weight minimum and drive efficiency maximal were as double optimizing target,the optimization model had built the drilling string,and the optimization solution was used of the ant colony algorithm to ... It took that the weight minimum and drive efficiency maximal were as double optimizing target,the optimization model had built the drilling string,and the optimization solution was used of the ant colony algorithm to find in progress.Adopted a two-layer search of the continuous space ant colony algorithm with overlapping or variation global ant search operation strategy and conjugated gradient partial ant search operation strat- egy.The experiment indicates that the spiral drill weight reduces 16.77% and transports the efficiency enhance 7.05% through the optimization design,the ant colony algorithm application on the spiral drill optimized design has provided the basis for the system re- search screw coal mine machine. 展开更多
关键词 screw coal miner optimization design ant colony algorithm two-layer search
在线阅读 下载PDF
A Novel Hybrid Vortex Search and Artificial Bee Colony Algorithm for Numerical Optimization Problems 被引量:1
14
作者 WANG Zhaowei WU Guomin WAN Zhongping 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第4期295-306,共12页
Though vortex search(VS) algorithm has good performance in solving global numerical optimization problems, it cannot fully search the whole space occasionally. Combining the vortex search algorithm and the artificia... Though vortex search(VS) algorithm has good performance in solving global numerical optimization problems, it cannot fully search the whole space occasionally. Combining the vortex search algorithm and the artificial bee colony algorithm(ABC) which has good performance in exploration, we present a HVS(hybrid vortex search) algorithm to solve the numerical optimization problems. We first use the employed bees and onlooker bees of ABC algorithm to find a solution, and then adopt the VS algorithm to find the best solution. In the meantime, we cannot treat the best solution so far as the center of the algorithm all the time. The algorithm is tested by 50 benchmark functions. The numerical results show the HVS algorithm has superior performance over the ABC and the VS algorithms. 展开更多
关键词 numerical optimization problems vortex searchalgorithm artificial bee colony algorithm hybrid algorithm
原文传递
Ant colony algorithm based on genetic method for continuous optimization problem 被引量:1
15
作者 朱经纬 蒙培生 王乘 《Journal of Shanghai University(English Edition)》 CAS 2007年第6期597-602,共6页
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of componen... A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions. 展开更多
关键词 ant colony algorithm genetic method diffusion function continuous optimization problem.
在线阅读 下载PDF
Buffer allocation method of serial production lines based on improved ant colony optimization algorithm 被引量:2
16
作者 周炳海 Yu Jiadi 《High Technology Letters》 EI CAS 2016年第2期113-119,共7页
Buffer influences the performance of production lines greatly.To solve the buffer allocation problem(BAP) in serial production lines with unreliable machines effectively,an optimization method is proposed based on an ... Buffer influences the performance of production lines greatly.To solve the buffer allocation problem(BAP) in serial production lines with unreliable machines effectively,an optimization method is proposed based on an improved ant colony optimization(IACO) algorithm.Firstly,a problem domain describing buffer allocation is structured.Then a mathematical programming model is established with an objective of maximizing throughput rate of the production line.On the basis of the descriptions mentioned above,combining with a two-opt strategy and an acceptance probability rule,an IACO algorithm is built to solve the BAP.Finally,the simulation experiments are designed to evaluate the proposed algorithm.The results indicate that the IACO algorithm is valid and practical. 展开更多
关键词 buffer allocation improved ant colony optimization (IACO) algorithm serial pro-duction line throughput rate
在线阅读 下载PDF
Application of Improved Artificial Bee Colony Algorithm in Urban Vegetable Distribution Route Optimization 被引量:1
17
作者 Zhenzhen Zhang Lianhua Wang 《Journal of Applied Mathematics and Physics》 2017年第11期2291-2301,共11页
According to the characteristics and requirements of urban vegetable logistics and distribution, the optimization model is established to achieve the minimum distribution cost of distribution center. The algorithm of ... According to the characteristics and requirements of urban vegetable logistics and distribution, the optimization model is established to achieve the minimum distribution cost of distribution center. The algorithm of artificial bee colony is improved, and the algorithm based on MATLAB software is designed to solve the model successfully. At the same time, combined with the actual case, the two algorithms are compared to verify the effectiveness of the improved artificial bee colony algorithm in the optimization of urban vegetable distribution path. 展开更多
关键词 URBAN VEGETABLE Vehicle ROUTING optimized Artificial BEE colony algorithm PATH optimization
在线阅读 下载PDF
Electro-Hydraulic Servo System Identification of Continuous Rotary Motor Based on the Integration Algorithm of Genetic Algorithm and Ant Colony Optimization 被引量:1
18
作者 王晓晶 李建英 +1 位作者 李平 修立威 《Journal of Donghua University(English Edition)》 EI CAS 2012年第5期428-433,共6页
In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which ... In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which was based on standard genetic algorithm and combined with positive feedback mechanism of ant colony algorithm. This method can obtain the precise mathematic model of continuous rotary motor which determines the order of servo system. Firstly, by constructing an appropriate fitness function, the problem of system parameters identification is converted into the problem of system parameter optimization. Secondly, in the given upper and lower bounds a set of optimal parameters are selected to meet the best approximation of the actual system. And the result shows that the identification output can trace the sampling output of actual system, and the error is very small. In addition, another set of experimental data are used to test the identification result. The result shows that the identification parameters can approach the actual system. The experimental results verify the feasibility of this method. And it is fit for the parameter identification of general complex system using the integration algorithm of GA-ACO. 展开更多
关键词 continuous rotary motor system identification genetic algorithm and ant colony optimization (GA-ACO) algorithm
在线阅读 下载PDF
Novel Voltage Scaling Algorithm Through Ant Colony Optimization for Embedded Distributed Systems
19
作者 章立生 丁丹 《Journal of Beijing Institute of Technology》 EI CAS 2007年第4期430-436,共7页
Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some wi... Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results. However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algorithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don’t depend on the number of modes available. 展开更多
关键词 dynamic voltage algorithm distributed system ant colony optimization MULTI-PROCESSOR
在线阅读 下载PDF
上一页 1 2 172 下一页 到第
使用帮助 返回顶部