Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programm...Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world problems.This paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human intervention.Partial modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the algorithm.By designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update formula.The Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the CSO.To validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark suite.Furthermore,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking process.The experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency.展开更多
This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtai...This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects.展开更多
Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address...Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types.展开更多
Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of ...Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals.展开更多
Dermatologists typically require extensive experience to accurately classify skin cancer.In recent years,the development of computer vision and machine learning has provided new methods for assisted diagnosis.Existing...Dermatologists typically require extensive experience to accurately classify skin cancer.In recent years,the development of computer vision and machine learning has provided new methods for assisted diagnosis.Existing skin cancer image classification methods have certain limitations,such as poor interpretability,the requirement of domain knowledge for feature extraction,and the neglect of lesion area information in skin images.This paper proposes a new genetic programming(GP)approach to automatically learn global and/or local features from skin images for classification.To achieve this,a new function set and a new terminal set have been developed.The proposed GP method can automatically and flexibly extract effective local/global features from different types of input images,thus providing a comprehensive description of skin images.A new region detection function has been developed to select the lesion areas from skin images for feature extraction.The performance of this approach is evaluated on three skin cancer image classification tasks,and compared with three GP methods and six non-GP methods.The experimental results show that the new approach achieves significantly better or similar performance in most cases.Further analysis validates the effectiveness of our parameter settings,visualizes the multiple region detection functions used in the individual evolved by the proposed approach,and demonstrates its good convergence ability.展开更多
Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations betw...Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations between deformation modulus and rock mass classifcation,and estimating from laboratory tests results.In this paper,a back analysis calculation is performed to present an equation for estimation of the rock mass modulus of deformation using genetic programming(GP)and numerical modeling.A database of 40,960 datasets,including vertical stress(rz),horizontal to vertical stresses ratio(k),Poisson’s ratio(m),radius of circular tunnel(r)and wall displacement of circular tunnel on the horizontal diameter(d)for input parameters and modulus of deformation for output,was established.The selected parameters are easy to determine and rock mass modulus of deformation can be obtained from instrumentation data of any size circular galleries.The resulting RMSE of 0.86 and correlation coeffcient of97%of the proposed equation demonstrated the capability of the computer program(CP)generated by GP.展开更多
An empirical dynamic model of burn-through point(BTP)in sintering process was developed.The K-means clustering was used to feed distribution according to the cold bed permeability,which was estimated by the superfic...An empirical dynamic model of burn-through point(BTP)in sintering process was developed.The K-means clustering was used to feed distribution according to the cold bed permeability,which was estimated by the superficial gas velocity in the cold stage.For each clustering,a novel genetic programming(NGP)was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage.The least square method(LSM)and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance.Simulation results show the superiority of the proposed method.展开更多
A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditio...A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM.展开更多
The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors. Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, there...The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors. Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, therefore genetic programming approach is propesed to predict mining induced surface subsidence in this article. First genetic programming technique is introduced, second, surface subsidence genetic programming model is set up by selecting its main affective factors and training relating to practical engineering data, and finally, predictions are made by the testing of data, whose results show that the relative error is approximately less than 10%, which can meet the engineering needs, and therefore, this proposed approach is valid and applicable in predicting mining induced surface subsidence. The model offers a novel method to predict surface subsidence in mining.展开更多
More accurate and reliable estimation of residual strength friction angle(/r)of clay is crucial in many geotechnical engineering applications,including riverbank stability analysis,design,and assessment of earthen dam...More accurate and reliable estimation of residual strength friction angle(/r)of clay is crucial in many geotechnical engineering applications,including riverbank stability analysis,design,and assessment of earthen dam slope stabilities.However,a general predictive equation for/r,with applicability in a wide range of effective parameters,remains an important research gap.The goal of this study is to develop a more accurate equation for/r using the Pareto Optimal Multi-gene Genetic Programming(POMGGP)approach by evaluating a comprehensive dataset of 290 experiments compiled from published literature databases worldwide.A new framework for integrated equation derivation proposed that hybridizes the Subset Selection of Maximum Dissimilarity Method(SSMD)with Multi-gene Genetic Programming(MGP)and Pareto-optimality(PO)to find an accurate equation for/r with wide range applicability.The final predictive equation resulted from POMGGP modeling was assessed in comparison with some previously published machine learning-based equations using statistical error analysis criteria,Taylor diagram,revised discrepancy ratio(RDR),and scatter plots.Base on the results,the POMGGP has the lowest uncertainty with U95=2.25,when compared with Artificial Neural Network(ANN)(U95=2.3),Bayesian Regularization Neural Network(BRNN)(U95=2.94),Levenberg-Marquardt Neural Network(LMNN)(U95=3.3),and Differential Evolution Neural Network(DENN)(U95=2.37).The more reliable results in estimation of/r derived by POMGGP with reliability 59.3%,and resiliency 60%in comparison with ANN(reliability=30.23%,resiliency=28.33%),BRNN(reliability=10.47%,resiliency=10.39%),LMNN(reliability=19.77%,resiliency=20.29%)and DENN(reliability=27.91%,resiliency=24.19%).Besides the simplicity and ease of application of the new POMGGP equation to a broad range of conditions,using the uncertainty,reliability,and resilience analysis confirmed that the derived equation for/r significantly outperformed other existing machine learning methods,including the ANN,BRNN,LMNN,and DENN equations。展开更多
Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the...Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the complex relation between the input and output data of the system of flood disaster loss. Genetic programming (GP) solves problems by using ideas from genetic algorithm and generates computer programs automatically. In this study a new method named the evaluation of the grade of flood disaster loss (EGFD) on the basis of improved genetic programming (IGP) is presented (IGP-EGFD). The flood disaster area and the direct economic loss are taken as the evaluation indexes of flood disaster loss. Obviously that the larger the evaluation index value, the larger the corresponding value of the grade of flood disaster loss is. Consequently the IGP code is designed to make the value of the grade of flood disaster be an increasing function of the index value. The result of the application of the IGP-EGFD model to Henan Province shows that a good function expression can be obtained within a bigger searched function space; and the model is of high precision and considerable practical significance. Thus, IGP-EGFD can be widely used in automatic modeling and other evaluation systems.展开更多
Detection and classification of the blurred and the non-blurred regions in images is a challenging task due to the limited available information about blur type,scenarios and level of blurriness.In this paper,we propo...Detection and classification of the blurred and the non-blurred regions in images is a challenging task due to the limited available information about blur type,scenarios and level of blurriness.In this paper,we propose an effective method for blur detection and segmentation based on transfer learning concept.The proposed method consists of two separate steps.In the first step,genetic programming(GP)model is developed that quantify the amount of blur for each pixel in the image.The GP model method uses the multiresolution features of the image and it provides an improved blur map.In the second phase,the blur map is segmented into blurred and non-blurred regions by using an adaptive threshold.A model based on support vector machine(SVM)is developed to compute adaptive threshold for the input blur map.The performance of the proposed method is evaluated using two different datasets and compared with various state-of-the-art methods.The comparative analysis reveals that the proposed method performs better against the state-of-the-art techniques.展开更多
This paper presents a genetic programming based reconfiguration planner for metamorphic modular robots. Initially used for evolving computer programs that can solve simple problems, genetic programming (GP) has been...This paper presents a genetic programming based reconfiguration planner for metamorphic modular robots. Initially used for evolving computer programs that can solve simple problems, genetic programming (GP) has been recently used to handle various kinds of problems in the area of complex systems. This paper details how genetic programming can be used as an automatic programming tool for handling reconfiguration-planning problem. To do so, the GP evolves sequences of basic operations which are required for transforming the robot's geometric structure from its initial configuration into the target one while the total number of modules and their connectedness are preserved. The proposed planner is intended for both Crystalline and TeleCube modules which are achieved by cubical compressible units. The target pattern of the modular robot is expressed in quantitative terms of morphogens diffused on the environment. Our work presents a solution for self recontlguration problem with restricted and unrestricted free space available to the robot during reconfiguration, The planner outputs a near optimal explicit sequence of low-level actions that allows modules to move relative to each other in order to form the desired shape.展开更多
This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) ...This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling.展开更多
In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is...In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is based on two ideas. First, we defined an approach, called interactivity within an individual (IWI), which is based on a graph-GP representation. Second, we add to the individuals created with the IWI approach multiple outputs in their structures and as a result of this, we have MIOST. As a first step, we analyze the effects of IWI by using only mutations and analyze its implications (i.e., presence of neutrality). Then, we continue testing the effectiveness of IWI by allowing mutations and the standard GP crossover in the evolutionary process. Finally, we tested the effectiveness of MIOST by using mutations and crossover and conducted extensive empirical results on different evolvable problems of different complexity taken from the literature. The results reported in this paper indicate that the proposed approach has a better overall performance in terms of consistency reaching feasible solutions.展开更多
The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavement...The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.展开更多
A new point-tree data structure genetic programming (PTGP) method is proposed. For the discontinuous function regression problem, the proposed method is able to identify both the function structure and discontinuities...A new point-tree data structure genetic programming (PTGP) method is proposed. For the discontinuous function regression problem, the proposed method is able to identify both the function structure and discontinuities points simultaneously. It is also easy to be used to solve the continuous function's regression problems. The numerical experiment results demonstrate that the point-tree GP is an efficient alternative way to the complex function identification problems.展开更多
When acquaintances of a model are little or the model is too complicate to build by using traditional time series methods, it is convenient for us to take advantage of genetic programming (GP) to build the model. Cons...When acquaintances of a model are little or the model is too complicate to build by using traditional time series methods, it is convenient for us to take advantage of genetic programming (GP) to build the model. Considering the complexity of nonlinear dynamic systems, this paper proposes modeling dynamic systems by using the nonlinear difference e-quation based on GP technique. First it gives the method, criteria and evaluation of modeling. Then it describes the modeling algorithm using GP. Finally two typical examples of time series are used to perform the numerical experiments. The result shows that this algorithm can successfully establish the difference equation model of dynamic systems and its predictive result is also satisfactory.展开更多
In many areas, reliability of the digital circuits has become the key factor to restrict circuit development. Fault-tolerant design is the commonly used method to improve the reliability of digital circuits. The curre...In many areas, reliability of the digital circuits has become the key factor to restrict circuit development. Fault-tolerant design is the commonly used method to improve the reliability of digital circuits. The current fault-tolerant design methods are based on triple modular redundancy( TMR) or multiple modular redundancy( MMR). These redundancy designs rely on the experience of the designers,and the designed circuits have poor adaptabilities to a complex environment. However, evolutionary design of digital circuits does not rely on prior knowledge. During the evolution, some novel and optimal circuit topologies can be found, and the evolved circuits can feature strong adaptive capacities. Based on Cartesian genetic programming( CGP), a novel method for designing fault-tolerant digital circuits by evolution is proposed,key steps of the evolution are introduced,influences of function sets on evolution are investigated,and as a preliminary result,an evolved full adder with high fault-tolerance is shown.展开更多
In this paper, we calculated 37 structural descriptors of 174 organic compounds. The 154 molecules were used to derive quantitative structure - infinite dilution activity confficient relationship by genetic programmin...In this paper, we calculated 37 structural descriptors of 174 organic compounds. The 154 molecules were used to derive quantitative structure - infinite dilution activity confficient relationship by genetic programming, the other 20 compounds were used to test the model. The result showed that molecular partition property and three-dimensional structural descriptors have significant influence on the infinite dilution activity coefficients.展开更多
文摘Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world problems.This paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human intervention.Partial modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the algorithm.By designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update formula.The Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the CSO.To validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark suite.Furthermore,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking process.The experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency.
基金Projects(52108364,52278398)supported by the National Natural Science Foundation of ChinaProject(211179)supported by the Royal Society,UK+1 种基金Project(22CX06051A)supported by the Independent Innovation Research Plan Project of China University of Petroleum(East China)Project(ZR2023QE004)supported by the Shandong Provincial Natural Science Foundation,China。
文摘This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects.
文摘Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types.
文摘Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals.
基金supported in part by National Natural Science Foundation of China(U23A20340,62376253,62106230,62176238,62476254)China Postdoctoral Science Foundation,China(2023M743185)+2 种基金Natural Science Foundation of Henan Province,China(222300420088)Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications,China Open Foundation(BDIC-2023-A-007)Frontier Exploration Projects of Longmen Laboratory,China(NO.LMQYTSKT031).
文摘Dermatologists typically require extensive experience to accurately classify skin cancer.In recent years,the development of computer vision and machine learning has provided new methods for assisted diagnosis.Existing skin cancer image classification methods have certain limitations,such as poor interpretability,the requirement of domain knowledge for feature extraction,and the neglect of lesion area information in skin images.This paper proposes a new genetic programming(GP)approach to automatically learn global and/or local features from skin images for classification.To achieve this,a new function set and a new terminal set have been developed.The proposed GP method can automatically and flexibly extract effective local/global features from different types of input images,thus providing a comprehensive description of skin images.A new region detection function has been developed to select the lesion areas from skin images for feature extraction.The performance of this approach is evaluated on three skin cancer image classification tasks,and compared with three GP methods and six non-GP methods.The experimental results show that the new approach achieves significantly better or similar performance in most cases.Further analysis validates the effectiveness of our parameter settings,visualizes the multiple region detection functions used in the individual evolved by the proposed approach,and demonstrates its good convergence ability.
文摘Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations between deformation modulus and rock mass classifcation,and estimating from laboratory tests results.In this paper,a back analysis calculation is performed to present an equation for estimation of the rock mass modulus of deformation using genetic programming(GP)and numerical modeling.A database of 40,960 datasets,including vertical stress(rz),horizontal to vertical stresses ratio(k),Poisson’s ratio(m),radius of circular tunnel(r)and wall displacement of circular tunnel on the horizontal diameter(d)for input parameters and modulus of deformation for output,was established.The selected parameters are easy to determine and rock mass modulus of deformation can be obtained from instrumentation data of any size circular galleries.The resulting RMSE of 0.86 and correlation coeffcient of97%of the proposed equation demonstrated the capability of the computer program(CP)generated by GP.
基金Sponsored by National Natural Science Foundation of China(60736021,21076179)National High-Technologies Research and Development Program of China(863 Program)(2006AA04Z184,2007AA041406)+1 种基金Key Technologies Research and Development Program of Zhejiang Province of China(2006C11066,2006C31051)Natural Science Foundation of Zhejiang Province of China(Y4080339)
文摘An empirical dynamic model of burn-through point(BTP)in sintering process was developed.The K-means clustering was used to feed distribution according to the cold bed permeability,which was estimated by the superficial gas velocity in the cold stage.For each clustering,a novel genetic programming(NGP)was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage.The least square method(LSM)and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance.Simulation results show the superiority of the proposed method.
基金National Defense Advanced Research Foundation of China
文摘A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM.
基金This paper is supported by Jinchuan Group Ltd.(No.2004-01D).
文摘The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors. Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, therefore genetic programming approach is propesed to predict mining induced surface subsidence in this article. First genetic programming technique is introduced, second, surface subsidence genetic programming model is set up by selecting its main affective factors and training relating to practical engineering data, and finally, predictions are made by the testing of data, whose results show that the relative error is approximately less than 10%, which can meet the engineering needs, and therefore, this proposed approach is valid and applicable in predicting mining induced surface subsidence. The model offers a novel method to predict surface subsidence in mining.
文摘More accurate and reliable estimation of residual strength friction angle(/r)of clay is crucial in many geotechnical engineering applications,including riverbank stability analysis,design,and assessment of earthen dam slope stabilities.However,a general predictive equation for/r,with applicability in a wide range of effective parameters,remains an important research gap.The goal of this study is to develop a more accurate equation for/r using the Pareto Optimal Multi-gene Genetic Programming(POMGGP)approach by evaluating a comprehensive dataset of 290 experiments compiled from published literature databases worldwide.A new framework for integrated equation derivation proposed that hybridizes the Subset Selection of Maximum Dissimilarity Method(SSMD)with Multi-gene Genetic Programming(MGP)and Pareto-optimality(PO)to find an accurate equation for/r with wide range applicability.The final predictive equation resulted from POMGGP modeling was assessed in comparison with some previously published machine learning-based equations using statistical error analysis criteria,Taylor diagram,revised discrepancy ratio(RDR),and scatter plots.Base on the results,the POMGGP has the lowest uncertainty with U95=2.25,when compared with Artificial Neural Network(ANN)(U95=2.3),Bayesian Regularization Neural Network(BRNN)(U95=2.94),Levenberg-Marquardt Neural Network(LMNN)(U95=3.3),and Differential Evolution Neural Network(DENN)(U95=2.37).The more reliable results in estimation of/r derived by POMGGP with reliability 59.3%,and resiliency 60%in comparison with ANN(reliability=30.23%,resiliency=28.33%),BRNN(reliability=10.47%,resiliency=10.39%),LMNN(reliability=19.77%,resiliency=20.29%)and DENN(reliability=27.91%,resiliency=24.19%).Besides the simplicity and ease of application of the new POMGGP equation to a broad range of conditions,using the uncertainty,reliability,and resilience analysis confirmed that the derived equation for/r significantly outperformed other existing machine learning methods,including the ANN,BRNN,LMNN,and DENN equations。
基金The authors would like to acknowledge the funding support of the National Natural Science Foundation of China (No. 50579009, 70425001).
文摘Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the complex relation between the input and output data of the system of flood disaster loss. Genetic programming (GP) solves problems by using ideas from genetic algorithm and generates computer programs automatically. In this study a new method named the evaluation of the grade of flood disaster loss (EGFD) on the basis of improved genetic programming (IGP) is presented (IGP-EGFD). The flood disaster area and the direct economic loss are taken as the evaluation indexes of flood disaster loss. Obviously that the larger the evaluation index value, the larger the corresponding value of the grade of flood disaster loss is. Consequently the IGP code is designed to make the value of the grade of flood disaster be an increasing function of the index value. The result of the application of the IGP-EGFD model to Henan Province shows that a good function expression can be obtained within a bigger searched function space; and the model is of high precision and considerable practical significance. Thus, IGP-EGFD can be widely used in automatic modeling and other evaluation systems.
基金This work was supported by the BK-21 FOUR program through National Research Foundation of Korea(NRF)under Ministry of Education.
文摘Detection and classification of the blurred and the non-blurred regions in images is a challenging task due to the limited available information about blur type,scenarios and level of blurriness.In this paper,we propose an effective method for blur detection and segmentation based on transfer learning concept.The proposed method consists of two separate steps.In the first step,genetic programming(GP)model is developed that quantify the amount of blur for each pixel in the image.The GP model method uses the multiresolution features of the image and it provides an improved blur map.In the second phase,the blur map is segmented into blurred and non-blurred regions by using an adaptive threshold.A model based on support vector machine(SVM)is developed to compute adaptive threshold for the input blur map.The performance of the proposed method is evaluated using two different datasets and compared with various state-of-the-art methods.The comparative analysis reveals that the proposed method performs better against the state-of-the-art techniques.
文摘This paper presents a genetic programming based reconfiguration planner for metamorphic modular robots. Initially used for evolving computer programs that can solve simple problems, genetic programming (GP) has been recently used to handle various kinds of problems in the area of complex systems. This paper details how genetic programming can be used as an automatic programming tool for handling reconfiguration-planning problem. To do so, the GP evolves sequences of basic operations which are required for transforming the robot's geometric structure from its initial configuration into the target one while the total number of modules and their connectedness are preserved. The proposed planner is intended for both Crystalline and TeleCube modules which are achieved by cubical compressible units. The target pattern of the modular robot is expressed in quantitative terms of morphogens diffused on the environment. Our work presents a solution for self recontlguration problem with restricted and unrestricted free space available to the robot during reconfiguration, The planner outputs a near optimal explicit sequence of low-level actions that allows modules to move relative to each other in order to form the desired shape.
基金Project (Nos. 60174009 and 70071017) supported by the NationalNatural Science Foundation of China
文摘This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling.
基金This paper was supported by the Mexican Consejo Nacional de Ciencia y Tecnologia(CONACyT)for the postgraduate studies at University of Essex.
文摘In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is based on two ideas. First, we defined an approach, called interactivity within an individual (IWI), which is based on a graph-GP representation. Second, we add to the individuals created with the IWI approach multiple outputs in their structures and as a result of this, we have MIOST. As a first step, we analyze the effects of IWI by using only mutations and analyze its implications (i.e., presence of neutrality). Then, we continue testing the effectiveness of IWI by allowing mutations and the standard GP crossover in the evolutionary process. Finally, we tested the effectiveness of MIOST by using mutations and crossover and conducted extensive empirical results on different evolvable problems of different complexity taken from the literature. The results reported in this paper indicate that the proposed approach has a better overall performance in terms of consistency reaching feasible solutions.
基金the financial support from the University of Pittsburgh Anthony Gill Chair and the Impactful Resilient Infrastructure Science and Engineering Consortium(IRISE)at University of Pittsburgh.
文摘The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.
基金Supported by the National Natural Science Foundation(60173046)and the Natural Science Foundation of Province(2002AB040)
文摘A new point-tree data structure genetic programming (PTGP) method is proposed. For the discontinuous function regression problem, the proposed method is able to identify both the function structure and discontinuities points simultaneously. It is also easy to be used to solve the continuous function's regression problems. The numerical experiment results demonstrate that the point-tree GP is an efficient alternative way to the complex function identification problems.
基金Supported by Foundation for University Key Teacher by the Ministry of Education of China
文摘When acquaintances of a model are little or the model is too complicate to build by using traditional time series methods, it is convenient for us to take advantage of genetic programming (GP) to build the model. Considering the complexity of nonlinear dynamic systems, this paper proposes modeling dynamic systems by using the nonlinear difference e-quation based on GP technique. First it gives the method, criteria and evaluation of modeling. Then it describes the modeling algorithm using GP. Finally two typical examples of time series are used to perform the numerical experiments. The result shows that this algorithm can successfully establish the difference equation model of dynamic systems and its predictive result is also satisfactory.
基金National Natural Science Foundations of China(Nos.61271153,61372039)
文摘In many areas, reliability of the digital circuits has become the key factor to restrict circuit development. Fault-tolerant design is the commonly used method to improve the reliability of digital circuits. The current fault-tolerant design methods are based on triple modular redundancy( TMR) or multiple modular redundancy( MMR). These redundancy designs rely on the experience of the designers,and the designed circuits have poor adaptabilities to a complex environment. However, evolutionary design of digital circuits does not rely on prior knowledge. During the evolution, some novel and optimal circuit topologies can be found, and the evolved circuits can feature strong adaptive capacities. Based on Cartesian genetic programming( CGP), a novel method for designing fault-tolerant digital circuits by evolution is proposed,key steps of the evolution are introduced,influences of function sets on evolution are investigated,and as a preliminary result,an evolved full adder with high fault-tolerance is shown.
文摘In this paper, we calculated 37 structural descriptors of 174 organic compounds. The 154 molecules were used to derive quantitative structure - infinite dilution activity confficient relationship by genetic programming, the other 20 compounds were used to test the model. The result showed that molecular partition property and three-dimensional structural descriptors have significant influence on the infinite dilution activity coefficients.