期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A back-propagation neural network optimized by genetic algorithm for rock joint roughness evaluation
1
作者 Leibo Song Jieru Xie +4 位作者 Quan Jiang Gang Wang Shan Zhong Guansheng Han Jinzhong Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3054-3072,共19页
The joint roughness coefficient(JRC)is a key parameter in the assessment of mechanical properties and the stability of rock masses.This paper presents a novel approach to JRC evaluation using a genetic algorithm-optim... The joint roughness coefficient(JRC)is a key parameter in the assessment of mechanical properties and the stability of rock masses.This paper presents a novel approach to JRC evaluation using a genetic algorithm-optimized backpropagation(GA-BP)neural network.Conventional JRC evaluations have typically depended on two-dimensional(2D)and three-dimensional(3D)parameter calculation methods,which fail to fully capture the nonlinear relationship between the complex surface morphology of joints and their roughness.Our analysis from shear tests on eight different joint types revealed that the strength and failure characteristics of the joints not only exhibit directional dependence but also positively correlate with surface dip angles,heights,and back slope morphological features.Subsequently,five simple statistical parameters,i.e.average dip angle,median dip angle,average height,height coefficient of variation,and back slope feature value(K),were utilized to quantify these characteristics.For the prediction of JRC,we compiled and analyzed 105 datasets,each containing these five statistical parameters and their corresponding JRC values.A GA-BP neural network model was then constructed using this dataset,with the five morphological characteristic statistics serving as inputs and the JRC values as outputs.A comparative analysis was performed between the GA-BP neural network model,the statistical parameter method,and the fractal parameter method.This analysis confirmed that our proposed method offers higher accuracy in evaluating the roughness coefficient and shear strength of joints. 展开更多
关键词 Rock joint Joint roughness coefficient genetic algorithm-optimized backpropagation(ga-bp)neural network Shear strength
在线阅读 下载PDF
基于谱效关联及AHP-EWM综合赋权的Box-Behnken响应面法结合GA-BP多指标优化白芍-甘草药对提取工艺 被引量:1
2
作者 俞炎彧 邹纯才 +4 位作者 鄢海燕 朱宝兰琪 武于婷 佘明慧 叶晨星 《中国现代应用药学》 北大核心 2025年第3期410-423,共14页
目的采用谱效关联及层次分析法-熵权法(analytic hierarchy process-entropy weight method,AHP-EWM)综合赋权的Box-Behnken响应面法结合遗传算法-反向传播(genetic algorithm-backpropagation,GA-BP)神经网络建立白芍-甘草药对的综合... 目的采用谱效关联及层次分析法-熵权法(analytic hierarchy process-entropy weight method,AHP-EWM)综合赋权的Box-Behnken响应面法结合遗传算法-反向传播(genetic algorithm-backpropagation,GA-BP)神经网络建立白芍-甘草药对的综合评价指标,确定白芍-甘草药对的最佳提取工艺。方法采用Box-Behnken响应面法考察料液比、超声时间、乙醇浓度对白芍-甘草药对提取工艺的影响,测定白芍-甘草药对提取物干膏得率及其DPPH·清除率,建立其HPLC指纹图谱,选取没食子酸、芍药内酯苷、芍药苷、甘草苷、异甘草苷、甘草素、异甘草素、甘草酸等8种已知入血成分作为白芍-甘草药对提取物的主要质量标志物。采用灰色关联度法分析指纹图谱与DPPH·清除率间的谱效关系,计算关联度,获取关联度校正后的总峰面积和8种指标成分峰面积。采用AHP-EWM法对评价指标进行综合赋权并计算综合评价指标,获取Box-Behnken响应面优化的白芍-甘草药对最佳提取工艺,并与建立的GA-BP神经网络模型所预测的最佳提取工艺比较、验证。结果料液比、超声时间、乙醇浓度因素下的关联度变化范围分别为0.7174~0.8654、0.6679~0.8721、0.6436~0.8511;Box-Behnken响应面法和GA-BP神经网络优化的综合评价指标分别为0.98(RSD=3.2%)、0.93(RSD=2.2%),经对比及验证,确定白芍-甘草药对的最佳提取工艺为料液比1∶40(g·m L^(-1)),超声时间45 min,乙醇浓度75%。结论基于谱效关联及AHP-EWM综合赋权的Box-Behnken响应面法结合GA-BP神经网络多指标确定了白芍-甘草药对的最佳提取工艺,也为其他中药提取工艺的优化提供了新思路。 展开更多
关键词 白芍-甘草药对 谱效关联 Box-Behnken响应面法 层次分析法-熵权法综合赋权 遗传算法-反向传播神经网络
原文传递
我国社区卫生人力资源预测 被引量:2
3
作者 焦奥南 邵译莹 +1 位作者 莫颖宁 张诗梦 《中国卫生资源》 北大核心 2022年第5期644-649,共6页
目的 分析我国社区卫生人力资源发展趋势,以期为健康中国建设提供参考。方法 通过MATLAB R 2018 A建立灰色遗传算法优化(genetic algorithm-back propagation,GA-BP)神经网络组合模型,预测2021—2023年我国社区卫生人力资源,并比较各单... 目的 分析我国社区卫生人力资源发展趋势,以期为健康中国建设提供参考。方法 通过MATLAB R 2018 A建立灰色遗传算法优化(genetic algorithm-back propagation,GA-BP)神经网络组合模型,预测2021—2023年我国社区卫生人力资源,并比较各单预测模型与组合模型预测精度。结果 组合预测模型精度较好,卫生人员和卫生技术人员网络模型的均方误差(mean squared error,MSE) 和平均绝对百分比误差(mean absolute percentage error,MAPE) 的值分别为0.020 6、0.216 2%和0.019 5、0.167 4%,优于单模型预测。模型预测结果合理,我国社区卫生人员数和卫生技术人员数均保持增长趋势,2023年可分别达到71.403 8万人和60.029 0万人。结论 灰色-GA-BP神经网络组合预测模型适合我国社区卫生人力资源预测,随着医疗服务需求量的增加和新型冠状病毒肺炎疫情防控的常态化,社区卫生人力资源发展规模将逐渐提升,应注重各类卫生人才培训,保障社区卫生人员的切身利益,提升社区医疗服务能力。 展开更多
关键词 遗传算法优化神经网络genetic algorithm-back propagation neural network ga-bp neural network 人力资源human resource 社区卫生community health 预测predict
在线阅读 下载PDF
Research on Flashover Voltage Prediction of Catenary Insulator Based on CaSO_(4) Pollution with Different Mass Fraction
4
作者 Sihua Wang Junjun Wang +2 位作者 Lijun Zhou Long Chen Lei Zhao 《Energy Engineering》 EI 2022年第1期219-236,共18页
Pollution flashover accidents occur frequently in railway OCS in saline-alkali areas.To accurately predict the pollution flashover voltage of insulators,a pollution flashover warning should be made in advance.Accordin... Pollution flashover accidents occur frequently in railway OCS in saline-alkali areas.To accurately predict the pollution flashover voltage of insulators,a pollution flashover warning should be made in advance.According to the operating environment of insulators along the Qinghai-Tibet railway,the pollution flashover experiments were designed for the cantilever composite insulator FQBG-25/12.Through the experiments,the flashover voltage under the influence of soluble contaminant density(SCD)of different pollution components,non-soluble deposit density(NSDD),temperature(T),and atmospheric pressure(P)was obtained.On this basis,the GA-BP neural network prediction model was established.P,SCD,NSDD,CaSO_(4) mass fraction(w(CaSO_(4))),and T were taken as input parameters,50%flashover voltage(U_(50%))of the insulator was taken as output parameters.The results showed that the prediction deviation was less than 10%,which meets the basic engineering requirements.The results could not only provide early warning for the anti-pollution flashover work of the railway power supply department,but also be used as an auxiliary contrast to verify the accuracy of the results of the experiments,and provide a theoretical basis for the classification of pollution levels in different regions. 展开更多
关键词 Overhead contact system w(CaSO_(4)) INSULATOR pollution flashover test genetic algorithm-back propagation(ga-bp)neural network flashover voltage prediction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部