In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural netwo...In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural network was used to model the relationship between slag compositions and boron content in SiO2-CaO-Na3 AlF6-CaSiO3 slag system.The BP neural network predicted error is below 2.38%.The prediction results show that the slag composition has a significant influence on boron removal.Increasing the basicity of slag by adding CaO or Na3 AlF6 to CaSiO3-based slag could contribute to the boron removal,and the addition of Na3 AlF6 has a better removal effect in comparison with the addition of CaO.The oxidizing characteristic of CaSiO3 results in the ineffective removal with the addition of SiO2.The increase of oxygen potential(pO2)in the CaO-Na3 AlF6-CaSiO3 slag system by varying the SiO2 proportion can also contribute to the boron removal in silicon ingot.The best slag composition to remove boron was predicted by BP neural network using genetic algorithm(GA).The predicted results show that the mass fraction of boron in silicon reduces from 14.0000×10-6 to0.4366×10-6 after slag melting using 23.12%SiO2-10.44%CaO-16.83%Na3 AlF6-49.61%CaSiO3 slag system,close to the experimental boron content in silicon which is below 0.5×10-6.展开更多
Pollution flashover accidents occur frequently in railway OCS in saline-alkali areas.To accurately predict the pollution flashover voltage of insulators,a pollution flashover warning should be made in advance.Accordin...Pollution flashover accidents occur frequently in railway OCS in saline-alkali areas.To accurately predict the pollution flashover voltage of insulators,a pollution flashover warning should be made in advance.According to the operating environment of insulators along the Qinghai-Tibet railway,the pollution flashover experiments were designed for the cantilever composite insulator FQBG-25/12.Through the experiments,the flashover voltage under the influence of soluble contaminant density(SCD)of different pollution components,non-soluble deposit density(NSDD),temperature(T),and atmospheric pressure(P)was obtained.On this basis,the GA-BP neural network prediction model was established.P,SCD,NSDD,CaSO_(4) mass fraction(w(CaSO_(4))),and T were taken as input parameters,50%flashover voltage(U_(50%))of the insulator was taken as output parameters.The results showed that the prediction deviation was less than 10%,which meets the basic engineering requirements.The results could not only provide early warning for the anti-pollution flashover work of the railway power supply department,but also be used as an auxiliary contrast to verify the accuracy of the results of the experiments,and provide a theoretical basis for the classification of pollution levels in different regions.展开更多
基金financially supported by the National High Technology Research and Development Program of China (No.2012AA062302)。
文摘In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural network was used to model the relationship between slag compositions and boron content in SiO2-CaO-Na3 AlF6-CaSiO3 slag system.The BP neural network predicted error is below 2.38%.The prediction results show that the slag composition has a significant influence on boron removal.Increasing the basicity of slag by adding CaO or Na3 AlF6 to CaSiO3-based slag could contribute to the boron removal,and the addition of Na3 AlF6 has a better removal effect in comparison with the addition of CaO.The oxidizing characteristic of CaSiO3 results in the ineffective removal with the addition of SiO2.The increase of oxygen potential(pO2)in the CaO-Na3 AlF6-CaSiO3 slag system by varying the SiO2 proportion can also contribute to the boron removal in silicon ingot.The best slag composition to remove boron was predicted by BP neural network using genetic algorithm(GA).The predicted results show that the mass fraction of boron in silicon reduces from 14.0000×10-6 to0.4366×10-6 after slag melting using 23.12%SiO2-10.44%CaO-16.83%Na3 AlF6-49.61%CaSiO3 slag system,close to the experimental boron content in silicon which is below 0.5×10-6.
基金Supported by the National Natural Science Foundation of China(51767014)the Scientific and Technological Research and Development Program of the China Railway(2017J010-C/2017).
文摘Pollution flashover accidents occur frequently in railway OCS in saline-alkali areas.To accurately predict the pollution flashover voltage of insulators,a pollution flashover warning should be made in advance.According to the operating environment of insulators along the Qinghai-Tibet railway,the pollution flashover experiments were designed for the cantilever composite insulator FQBG-25/12.Through the experiments,the flashover voltage under the influence of soluble contaminant density(SCD)of different pollution components,non-soluble deposit density(NSDD),temperature(T),and atmospheric pressure(P)was obtained.On this basis,the GA-BP neural network prediction model was established.P,SCD,NSDD,CaSO_(4) mass fraction(w(CaSO_(4))),and T were taken as input parameters,50%flashover voltage(U_(50%))of the insulator was taken as output parameters.The results showed that the prediction deviation was less than 10%,which meets the basic engineering requirements.The results could not only provide early warning for the anti-pollution flashover work of the railway power supply department,but also be used as an auxiliary contrast to verify the accuracy of the results of the experiments,and provide a theoretical basis for the classification of pollution levels in different regions.