期刊文献+
共找到526篇文章
< 1 2 27 >
每页显示 20 50 100
Porosity Prediction from Well Logs Using Back Propagation Neural Network Optimized by Genetic Algorithm in One Heterogeneous Oil Reservoirs of Ordos Basin, China 被引量:5
1
作者 Lin Chen Weibing Lin +3 位作者 Ping Chen Shu Jiang Lu Liu Haiyan Hu 《Journal of Earth Science》 SCIE CAS CSCD 2021年第4期828-838,共11页
A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an import... A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area. 展开更多
关键词 porosity prediction well logs back propagation neural network genetic algorithm Ordos Basin Yanchang Formation
原文传递
Optimization of Process Parameters for Cracking Prevention of UHSS in Hot Stamping Based on Hammersley Sequence Sampling and Back Propagation Neural Network-Genetic Algorithm Mixed Methods 被引量:1
2
作者 menghan wang zongmin yue lie meng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第2期31-39,共9页
In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( B... In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible. 展开更多
关键词 HOT STAMPING CRACKING Hammersley SEQUENCE sampling BACK-propagation genetic algorithm
在线阅读 下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
3
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network genetic algorithms Back propagation model (BP model) OPTIMIZATION
在线阅读 下载PDF
Gesture Recognition Based on BP Neural Network Improved by Chaotic Genetic Algorithm 被引量:18
4
作者 Dong-Jie Li Yang-Yang Li +1 位作者 Jun-Xiang Li Yu Fu 《International Journal of Automation and computing》 EI CSCD 2018年第3期267-276,共10页
Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the... Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA. 展开更多
关键词 Gesture recognition back propagation (BP) neural network chaos algorithm genetic algorithm data glove.
原文传递
Design of Robotic Visual Servo Control Based on Neural Network and Genetic Algorithm 被引量:9
5
作者 Hong-Bin Wang Mian Liu 《International Journal of Automation and computing》 EI 2012年第1期24-29,共6页
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req... A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control. 展开更多
关键词 Visual servo image Jacobian back propagation (BP) neural network genetic algorithm robot control
在线阅读 下载PDF
Research advances in genetics and breeding of Populus davidiana Dode in China 被引量:3
6
作者 李开隆 张方春 +1 位作者 包国荣 施佳 《Journal of Forestry Research》 SCIE CAS CSCD 1999年第1期25-30,共6页
In this paper a general introduction is given to research advances in genetics improvement and breeding of Chinese aspen (Populus davidiana Dode) in China. This introduction includes natural distribution and collectio... In this paper a general introduction is given to research advances in genetics improvement and breeding of Chinese aspen (Populus davidiana Dode) in China. This introduction includes natural distribution and collection, conservation, gene diversity, provenance trial, crossing breeding, vegetative propagation and disease resistant etc. Based on the current situation of forest tree breeding in China, some strategic suggestions concerning the future development of Chinese aspen genetics improvement in China are presented, taking into consideration the existing domestic demands of forestry production and international trends in forest tree breeding. 展开更多
关键词 Chinese aspen Natural distribution genetic resources conservation Cross breeding Tissue culture Vegetative propagation Disease resistant
在线阅读 下载PDF
基于不同算法优化的back propagation神经网络在三元乙丙橡胶混炼胶门尼黏度预测中的应用 被引量:2
7
作者 李高伟 李佳 +3 位作者 朱金梅 鉴冉冉 苗清 曾宪奎 《合成橡胶工业》 CAS 北大核心 2023年第6期488-494,共7页
分别采用遗传算法(GA)和粒子群算法(PSO)优化的back propagation(BP)神经网络建立了三元乙丙橡胶(EPDM)混炼胶门尼黏度的预测模型,并对预测结果的误差进行了对比分析。结果表明,两种算法优化后的BP神经网络模型的预测值与实测值均保持... 分别采用遗传算法(GA)和粒子群算法(PSO)优化的back propagation(BP)神经网络建立了三元乙丙橡胶(EPDM)混炼胶门尼黏度的预测模型,并对预测结果的误差进行了对比分析。结果表明,两种算法优化后的BP神经网络模型的预测值与实测值均保持较高的拟合度和相关性;相比单一的BP神经网络,GA优化后BP神经网络模型的精度提高了58.9%,PSO优化后BP神经网络模型的精度提高了3.57%,说明两种算法优化后的预测模型,特别是GA优化的BP神经网络预测模型对EPDM混炼胶门尼黏度的预测精度改善明显。 展开更多
关键词 back propagation神经网络 遗传算法 粒子群算法 三元乙丙橡胶 混炼胶 门尼黏度 预测模型
在线阅读 下载PDF
Use of genetic algorithm in new approach to modeling of flood routing 被引量:1
8
作者 EL ALAOUI EL FELS Abdelhafid ALAA Noureddine BACHNOU Ali 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第1期72-78,共7页
The hydrological models and simpli?ed methods of Saint-venant equations are used extensively in hydrological modeling, in particular for the simulation of the ?ood routing. These models require speci?c and extensive d... The hydrological models and simpli?ed methods of Saint-venant equations are used extensively in hydrological modeling, in particular for the simulation of the ?ood routing. These models require speci?c and extensive data that usually makes the study of ?ood propagation an arduous practice. We present in this work a new model, based on a transfer function, this function is a function of parametric probability density, having a physical meaning with respect to the propagation of a hydrological signal. The inversion of the model is carried out by an optimization technique called Genetic Algorithm. It consists of evolving a population of parameters based primarily on genetic recombination operators and natural selection to?nd the minimum of an objective function that measures the distance between observed and simulated data. The precision of the simulations of the proposed model is compared with the response of the Hayami model and the applicability of the model is tested on a real case, the N'Fis basin river, located in the High Atlas Occidental, which presents elements that appear favorable to the study of the propagation. The results obtained are very satisfactory and the simulation of the proposed model is very close to the response of the Hayami model. 展开更多
关键词 genetic Algorithm FLOOD ROUTING Hayami model simulation propagation
在线阅读 下载PDF
Combinatorial Optimization Based Analog Circuit Fault Diagnosis with Back Propagation Neural Network 被引量:1
9
作者 李飞 何佩 +3 位作者 王向涛 郑亚飞 郭阳明 姬昕禹 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期774-778,共5页
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of... Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN. 展开更多
关键词 analog circuit fault diagnosis back propagation(BP) neural network combinatorial optimization TOLERANCE genetic algorithm(G A) Levenberg-Marquardt algorithm(LMA)
在线阅读 下载PDF
Underwater vehicle sonar self-noise prediction based on genetic algorithms and neural network
10
作者 WU Xiao-guang SHI Zhong-kun 《Journal of Marine Science and Application》 2006年第2期36-41,共6页
The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimen... The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimental results demonstrate that underwater vehicle sonar self-noise can be predicted accurately by a GA-BP neural network that is based on actual underwater vehicle sonar data. 展开更多
关键词 sonar self-noise back propagation (BP) neural network genetic algorithms
在线阅读 下载PDF
A Four-color Matching Method Combining Neural Networks with Genetic Algorithm
11
作者 苏小红 Wang +2 位作者 Yadong ZHANG Tianwen 《High Technology Letters》 EI CAS 2003年第4期39-43,共5页
A brief review of color matching technology and its application of printing RGB images by CMY or CMYK ink jet printers is presented, followed by an explanation to the conventional approaches that are commonly used in ... A brief review of color matching technology and its application of printing RGB images by CMY or CMYK ink jet printers is presented, followed by an explanation to the conventional approaches that are commonly used in color matching. Then, a four color matching method combining neural network with genetic algorithm is proposed. The initial weights and thresholds of the BP neural network for RGB to CMY color conversion are optimized by the new genetic algorithm based on evolutionarily stable strategy. The fourth component K is generated by using GCR (Gray Component Replacement) concept. Simulation experiments show that it is well behaved in both accuracy and generalization performance. 展开更多
关键词 color matching color reproduction back propagation (BP) neural networks genetic algorithm
在线阅读 下载PDF
A Review of an Expert System Design for Crude Oil Distillation Column Using the Neural Networks Model and Process Optimization and Control Using Genetic Algorithm Framework 被引量:1
12
作者 Lekan Taofeek Popoola Gutti Babagana Alfred Akpoveta Susu 《Advances in Chemical Engineering and Science》 2013年第2期164-170,共7页
This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (... This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method. 展开更多
关键词 Artificial Neural Network CRUDE Oil Distillation Column genetic ALGORITHM FRAMEWORK Sigmoidal Transfer Function BACK-propagation ALGORITHM
在线阅读 下载PDF
基于融合注意力机制BP神经网络的深基坑变形预测方法
13
作者 张明聚 秦胜旺 +3 位作者 李鹏飞 葛辰贺 杨萌 谢治天 《北京交通大学学报》 北大核心 2025年第2期95-104,共10页
针对单一反向传播(Back Propagation,BP)神经网络预测基坑开挖变形时泛化性差及容易出现局部最优解的问题,分别采用遗传算法(Genetic Algorithms,GA)、粒子群算法(Particle Swarm Optimization,PSO)进行优化,并融合注意力机制(Attention... 针对单一反向传播(Back Propagation,BP)神经网络预测基坑开挖变形时泛化性差及容易出现局部最优解的问题,分别采用遗传算法(Genetic Algorithms,GA)、粒子群算法(Particle Swarm Optimization,PSO)进行优化,并融合注意力机制(Attention)组合成GA-Attention-BP和PSO-Attention-BP神经网络模型.依托南京双子座基坑工程,采用PLAXIS 2D模拟了680组不同工况下围护结构及地表的变形特征,并结合20组南京地区基坑实测监测数据作为数据集,以均方误差(Mean Squared Error,MSE)、平均绝对误差(Mean Absolute Error,MAE)和决定系数(RSquare,R2)作为评价指标,将不同神经网络的预测值和实际监测值进行对比.研究结果表明:GAAttention-BP和PSO-Attention-BP的MSE分别为3.47和3.22,MAE分别为1.59和1.47,R2分别为0.93和0.96,较BP和Attention-BP神经网络有较大的性能提升,预测效果较好;基于注意力机制的权重分配结果表明,基坑深度和地下连续墙的宽度对围护结构变形的影响最为显著,其权重系数分别高达1.33和1.17. 展开更多
关键词 深基坑工程 数值模拟 注意力机制 反向传播 遗传算法 粒子群算法
在线阅读 下载PDF
基于BP-ANN的人工渗滤系统去除总磷过程优化
14
作者 刘元坤 曹塬琪 +2 位作者 于艾鑫 李星 郭晓天 《中国环境科学》 北大核心 2025年第6期3151-3160,共10页
本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,... 本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,P<0.0001,可较好的对TP的去除过程进行预测,接触时间为TP去除率最显著的参数,TP吸附过程中各因素的相对影响顺序为:接触时间>pH值>温度>初始浓度.采用BP-ANN模型进行优化,最佳网络结构为4-8-1.敏感性分析表明,影响TP去除率的因素依次为接触时间(34.05%)>pH值(28.67%)>温度(19.56%)>初始浓度(17.72%).基于BP-ANN模型,采用GA优化人工渗滤系统运行条件,对TP去除过程的优化结果为:接触时间为720.53min、初始浓度为2.75mg/L、温度为30.62℃、pH为5,达到最佳去除率(99.63%).试验验证分析表明,BP-ANN-GA较BBD-RSM的预测值与实验值相比拥有较高的R 2(0.9939)和较低的RSME(1.2851),说明该模型具有更好的预测能力,能更好的描述人工快速渗滤系统对TP的去除过程. 展开更多
关键词 BBD响应面法 反向传播人工神经网络 遗传算法 总磷 人工快速渗滤系统
在线阅读 下载PDF
桐棉马尾松无性系在贵州南部的生长表现及初步选择 被引量:1
15
作者 蔡磊 王胤 +6 位作者 周家春 何可权 陆跃堂 陆景奎 潘光复 熊天宝 姚瑞玲 《西北农林科技大学学报(自然科学版)》 北大核心 2025年第9期54-62,共9页
【目的】研究桐棉种源马尾松无性系在贵州黔南地区的生长表现,揭示其生长性状遗传变异特征并筛选速生、高产优良无性系,为马尾松无性系推广利用提供物质和技术支持。【方法】以营造于独山林场的21个5年生马尾松无性系试验林为研究对象,... 【目的】研究桐棉种源马尾松无性系在贵州黔南地区的生长表现,揭示其生长性状遗传变异特征并筛选速生、高产优良无性系,为马尾松无性系推广利用提供物质和技术支持。【方法】以营造于独山林场的21个5年生马尾松无性系试验林为研究对象,以古蓬种源实生苗(CK1)、无性系混系苗(CK2)、桐棉种源实生苗(CK3)、都匀种源实生苗(CK4)为对照,调查胸径、树高和单株材积,采用聚类分析、主成分分析和方差分析研究马尾松无性系的生长性状差异及其遗传多样性。【结果】21个马尾松无性系胸径为6.46~8.90 cm,树高为4.17~5.30 m,单株材积为0.0099~0.0182 m3,平均胸径、树高和单株材积比实生苗对照CK1、CK3、CK4分别提高了14.3%~69.2%,10.1%~38.6%和34.0%~224.8%,早期生长优势明显。参试无性系间的胸径、树高和单株材积差异极显著(P<0.01),其表型变异系数分别为19.39%,15.08%和46.04%,遗传变异系数分别为13.85%,10.55%和24.10%,重复力分别为0.69,0.71和0.57。无性系间生长性状变异丰富,主要由遗传控制,开展选择可取得良好效果。采用主成分分析计算各无性系胸径、树高和单株材积综合得分,从21个无性系中筛选出13个优良无性系,入选无性系胸径遗传增益为43.28%~70.12%,平均遗传增益为53.11%;树高遗传增益为19.64%~36.96%,平均遗传增益为28.27%;单株材积遗传增益为99.31%~192.55%,平均遗传增益为144.38%。【结论】21个桐棉种源马尾松无性系在贵州南部具有良好的适应性,造林成效良好,无性系间生长性状存在显著变异。经多性状综合评价筛选出的13个高增益优良无性系,可在贵州南部和环境条件相似地区推广利用。 展开更多
关键词 桐棉马尾松 无性系 生长性状 遗传变异 无性快繁 贵州南部
在线阅读 下载PDF
基于FDM的ABS/GF复合材料的力学性能分析及工艺参数优化 被引量:1
16
作者 林峰 叶大鹏 《塑料工业》 北大核心 2025年第4期77-85,共9页
为探索熔融沉积制造(FDM)工艺参数对玻璃纤维增强丙烯腈-丁二烯-苯乙烯共聚物(ABS/GF)复合材料力学性能的影响,为其应用和性能优化提供理论依据,本文通过Plackett-Burman筛选实验、单因素实验以及正交试验,探讨了各工艺参数对材料力学... 为探索熔融沉积制造(FDM)工艺参数对玻璃纤维增强丙烯腈-丁二烯-苯乙烯共聚物(ABS/GF)复合材料力学性能的影响,为其应用和性能优化提供理论依据,本文通过Plackett-Burman筛选实验、单因素实验以及正交试验,探讨了各工艺参数对材料力学性能的影响,并识别出对拉伸强度和弯曲强度有显著影响的关键参数。在此基础上,基于拉丁超立方采样方法获取实验数据,通过反向传播(BP)神经网络建立工艺参数与力学性能之间的非线性预测模型。最后,通过非支配排序遗传算法II(NSGA-II)多目标遗传算法,对拉伸强度和弯曲强度进行同步优化,得到了Pareto前沿解集,展示了不同参数组合下的优化权衡。结果表明,喷嘴温度、打印层高、打印线宽和打印速度是影响材料拉伸强度和弯曲强度的最显著因素。通过多目标优化,得到了能够同时最大化拉伸强度和弯曲强度的最佳参数组合,拉伸强度和弯曲强度分别提高7.6%和7.2%以上。实验验证结果显示,优化模型的预测值与实验测得值的偏差在可接受范围内,进一步验证了所提出代理模型和多目标优化方法的有效性。 展开更多
关键词 玻璃纤维增强丙烯腈-丁二烯-苯乙烯共聚物 正交试验 反向传播神经网络 遗传算法 多目标优化
在线阅读 下载PDF
基于BP神经网络的给水厂混凝剂投加量预测
17
作者 王坤 孙新洋 +4 位作者 黄显怀 唐玉朝 伍昌年 尹翠琴 张良霄 《中国给水排水》 北大核心 2025年第9期53-58,共6页
选取合肥市某给水厂运行数据,使用相关系数法进行筛选后,选取流量、浊度、耗氧量、pH和水温作为预测模型的输入参数,利用多层变分模态分解(VMD)算法捕捉数据信息,通过遗传算法(GA)优化BP神经网络权重和偏置,建立基于VMD-GA-BP神经网络... 选取合肥市某给水厂运行数据,使用相关系数法进行筛选后,选取流量、浊度、耗氧量、pH和水温作为预测模型的输入参数,利用多层变分模态分解(VMD)算法捕捉数据信息,通过遗传算法(GA)优化BP神经网络权重和偏置,建立基于VMD-GA-BP神经网络的给水厂混凝剂投加量预测模型。该模型评价指标平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)均低于单层VMD-GA-BP模型、输入参数未经多层VMD分解的GA-BP模型和未利用GA优化的VMD-BP模型,相比单层VMD-GA-BP模型,MAE下降37.26%、RMSE下降36.19%、MAPE下降2.44%;与GA-BP模型相比,MAE下降27.03%、RMSE下降23.94%、MAPE下降1.43%;与VMD-BP模型相比,MAE下降40.99%、RMSE下降41.47%、MAPE下降2.83%。结果表明,多层VMD算法与GA的参与提高了模型预测的准确性和稳定性,模型能有效拟合混凝剂投加量变化趋势。 展开更多
关键词 混凝剂投加量 变分模态分解(VMD) 遗传算法(GA) BP神经网络
原文传递
紫斑牡丹花粉片制备工艺优化及其半成品颗粒质量控制
18
作者 彭腾腾 李海燕 +4 位作者 尹盼盼 王信 范彬 马趣环 石晓峰 《中成药》 北大核心 2025年第1期42-50,共9页
目的优化紫斑牡丹花粉片制备工艺,并控制其半成品颗粒质量。方法在单因素试验基础上,以花粉用量、乳糖与羟丙基甲基纤维素比例、交联聚维酮用量为影响因素,外观、硬度、脆碎度、崩解度的综合评分为评价指标,响应面试验结合反向传播神经... 目的优化紫斑牡丹花粉片制备工艺,并控制其半成品颗粒质量。方法在单因素试验基础上,以花粉用量、乳糖与羟丙基甲基纤维素比例、交联聚维酮用量为影响因素,外观、硬度、脆碎度、崩解度的综合评分为评价指标,响应面试验结合反向传播神经网络(BPNN)-遗传算法(GA)优化制备工艺。根据2020年版《中国药典》相关规定,测定半成品颗粒含水量、流动性、可压性、吸湿性。结果最佳条件为花粉用量76%,乳糖与羟丙基甲基纤维素比例1∶2,交联聚维酮用量13%,交联聚维酮内外加入比例1∶2,乙醇体积分数70%,综合评分为33.2分。半成品颗粒平均休止角为18.67°,压缩度为18.71%,豪斯纳比率为1.23%,最大吸湿率为13.17%,临界相对湿度为55.72%。结论该方法合理可行,可为紫斑牡丹花粉相关产品开发提供新思路,并且其半成品颗粒质量可控,能保证制粒过程顺利和提高花粉片质量。 展开更多
关键词 紫斑牡丹花粉片 制备工艺 半成品颗粒 质量控制 响应面试验 反向传播神经网络(BPNN) 遗传算法(GA)
暂未订购
基于反向传播神经网络和遗传算法的地源热泵运行策略优化 被引量:3
19
作者 王海波 田彦法 +2 位作者 王涛 周世玉 刘吉营 《制冷技术》 2025年第2期71-76,共6页
为了解决系统在运行过程中人为操作产生的不节能问题,利用该系统2022年制冷季累计运行数据建立反向传播神经网络能耗预测模型,并对该模型进行了验证,其平均误差满足精度要求。基于能耗预测模型,采用遗传算法对该能耗预测模型寻优,对遗... 为了解决系统在运行过程中人为操作产生的不节能问题,利用该系统2022年制冷季累计运行数据建立反向传播神经网络能耗预测模型,并对该模型进行了验证,其平均误差满足精度要求。基于能耗预测模型,采用遗传算法对该能耗预测模型寻优,对遗传算法寻优结果与人为的经验调控结果进行对比。结果表明:基于遗传算法所得参数调控的节能效果优于人为的经验调控,在运行时长占比最大的负荷区间(30%~50%)节能百分比为7.84%。 展开更多
关键词 地源热泵 反向传播神经网络 遗传算法 能耗
在线阅读 下载PDF
‘金凤凰’茶树品系组培快繁体系的建立
20
作者 罗洁林 任露露 +3 位作者 孙智洋 王静娴 王旭 王春玲 《茶叶学报》 2025年第3期34-42,共9页
【目的】‘金凤凰’是源于武夷山市且具有一定规模的优异茶树品系。探索建立‘金凤凰’茶树组培快繁体系,为实现其优良品质稳定遗传及规模化快速繁殖提供技术支撑。【方法】以‘金凤凰’成熟茶籽为外植体,探究不同植物生长调节剂[6-苄... 【目的】‘金凤凰’是源于武夷山市且具有一定规模的优异茶树品系。探索建立‘金凤凰’茶树组培快繁体系,为实现其优良品质稳定遗传及规模化快速繁殖提供技术支撑。【方法】以‘金凤凰’成熟茶籽为外植体,探究不同植物生长调节剂[6-苄氨基嘌呤(6-BA)、萘乙酸(NAA)、吲哚丁酸(IBA)和赤霉素(GA3)等]之间的组合及其浓度差异对种胚诱导、定芽萌发、不定芽增殖和生根诱导的影响,从而建立‘金凤凰’茶树快繁体系。【结果】所使用的处理组合中,(1)‘金凤凰’最佳的种胚诱导培养基为MS+2.0 mg·L^(-1)6-BA+0.20 mg·L^(-1)NAA,萌发率为77.50%,无菌苗生长速度快,叶片舒展,茎干粗壮;(2)定芽萌发的最佳培养基配方为MS+1.0 mg·L^(-1)6-BA+0.10 mg·L^(-1)IBA+2.0 mg·L^(-1)GA3,定芽萌发率为82.22%;(3)不定芽增殖的最佳培养基为MS+2.0 mg·L^(-1)6-BA+0.10 mg·L^(-1)IBA,平均芽数最高为8.41个;(4)再生芽于100 mg·L^(-1)IBA无菌溶液中浸泡5 min,接种至1/2MS+2.0 mg·L^(-1)IBA,生根率达到65.55%,为最佳生根培养基。采用ISSR技术对再生植株进行分子检测,在连续2代离体再生植株中未发现明显遗传变异。【结论】不同的植物生长调节剂适合‘金凤凰’茶树品系组培快繁体系建立的不同阶段。NAA有助于种胚萌发,GA3有助于定芽萌发,IBA适合用于生根诱导。该研究建立了‘金凤凰’茶树组培快繁技术体系,为‘金凤凰’茶苗规模化生产及品种快速推广提供理论基础和技术支撑。 展开更多
关键词 金凤凰 茶树 组织培养 快繁技术 遗传稳定性
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部