This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the...This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.展开更多
In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which ...In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which was based on standard genetic algorithm and combined with positive feedback mechanism of ant colony algorithm. This method can obtain the precise mathematic model of continuous rotary motor which determines the order of servo system. Firstly, by constructing an appropriate fitness function, the problem of system parameters identification is converted into the problem of system parameter optimization. Secondly, in the given upper and lower bounds a set of optimal parameters are selected to meet the best approximation of the actual system. And the result shows that the identification output can trace the sampling output of actual system, and the error is very small. In addition, another set of experimental data are used to test the identification result. The result shows that the identification parameters can approach the actual system. The experimental results verify the feasibility of this method. And it is fit for the parameter identification of general complex system using the integration algorithm of GA-ACO.展开更多
By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identific...By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identification applications. The simulation results indicate that the method is not only capable of following the changing parameters of the system, but also has improved the identification accuracy compared with that using the least square method.展开更多
This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity fa...This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions.展开更多
The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-...The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-OCESE,which stands for Genetic Algorithm-based Optimization Configuration for Energy Storage in Electric Networks.This is one of the methods suggested in this study,which aims to enhance the sizing,positioning,and operational characteristics of structured ESS under dynamic grid conditions.Particularly,the aim is to maximize efficiency.A multiobjective genetic algorithm,the GA-OCESE framework,considers all these factors simultaneously.Besides considering cost-efficiency,response time,and energy use,the system also considers all these elements simultaneously.This enables it to effectively react to load uncertainty and variations in inputs connected to renewable sources.Results of an experimental assessment conducted on a standardized grid simulation platform indicate that by increasing energy use efficiency by 17.6%and reducing peak-load effects by 22.3%,GA-OCESE outperforms previous heuristic-based methods.This was found by contrasting the outcomes of the assessment with those of the evaluation.The results of the assessment helped to reveal this.The proposed approach will provide utility operators and energy planners with a decision-making tool that is both scalable and adaptable.This technology is particularly well-suited for smart grids,microgrid systems,and power infrastructures that heavily rely on renewable energy.Every technical component has been carefully recorded to ensure accuracy,reproducibility,and relevance across all power systems engineering software uses.This was done to ensure the program’s relevance.展开更多
Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember ...Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember and store some previous parameters is used for identifier. And for its high efficiency and optimization, genetic algorithm is introduced into training RMNN. Simulation results show the effectiveness of the proposed scheme. Under the same training algorithm, the identification performance of RMNN is superior to that of nonrecurrent multilayer neural network (NRMNN).展开更多
This study evaluates the undrained uplift capacity of open-caisson anchors embedded in anisotropic clay using Finite Element Limit Analysis(FELA)and a hybrid machine learning framework.The FELA simulations inves-tigat...This study evaluates the undrained uplift capacity of open-caisson anchors embedded in anisotropic clay using Finite Element Limit Analysis(FELA)and a hybrid machine learning framework.The FELA simulations inves-tigate the influence of the radius ratio(R/B),anisotropic ratio(re),interface roughness factor(α),and inclination angle(β).Specifically,the results reveal that increasingβsignificantly enhances Nc,especially as soil behavior approaches isotropy.Higherαimproves resistance at steeper inclinations by mobilizing greater interface shear.Nc increases with re,reflecting enhanced strength under isotropic conditions.To enhance predictive accuracy and generalization,a hybrid machine learning model was developed by integrating Extreme Gradient Boosting(XGBoost)with Genetic Algorithm(GA)and Mutation-Based Genetic Algorithm(MGA)for hyperparameter tuning.Among the models,MGA-XGBoost outperformed GA-XGBoost,achieving higher predictive accuracy(R^(2)=0.996 training,0.993 testing).Furthermore,SHAP analysis consistently identified anisotropic ratio(re)as the most influential factor in predicting uplift capacity,followed by interface roughness factor(α),inclination angle(β),and radius ratio(R/B).The proposed framework serves as a scalable decision-support tool adaptable to various soil types and foundation geometries,offering a more efficient and data-driven approach to uplift-resistant design in anisotropic cohesive soils.展开更多
To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic ...To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms.展开更多
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio...To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.展开更多
Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into g...Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into genetic algorithm, we proposed a heuristic genetic algorithm. In the genetic algorithm, we constructed a new operator to maintaining the classification ability. The experiment shows that our algorithm is efficient and effective for minimal reduct, even for the special example that the simple heuristic algorithm can’t get the right result.展开更多
Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybr...Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybrid genetic algorithm. From the measured dynamic responses of a hydro generator, an appropriate estimation algorithm is needed to identify the loading parameters, including the main frequencies and amplitudes of vibrating forces. In order to identify parameters in an efficient and robust manner, an optimization method is proposed that combines genetic algorithm with simulated annealing and elitist strategy. The hybrid genetic algorithm is then used to tackle an ill-posed problem of parameter identification, in which the effectiveness of the proposed optimization method is confirmed by its comparison with actual observation data.展开更多
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul...As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.展开更多
This paper develops a Quantum-inspired Genetic Algorithm(QGA) to find the sets of optimal parameters for the wind disturbance alleviation Flight Control System(FCS). To search the problem domain more evenly and unifor...This paper develops a Quantum-inspired Genetic Algorithm(QGA) to find the sets of optimal parameters for the wind disturbance alleviation Flight Control System(FCS). To search the problem domain more evenly and uniformly, the lattice rule based stratification method is used to create new chromosomes. The chromosomes are coded and updated according to quantuminspired strategies. A niching method is used to ensure every chromosome can converge to its corresponding local minimum in the optimization process. A parallel archive system is adopted to monitor the chromosomes on-line and save all potential feasible solutions in the optimization process. An adaptive search strategy is used to gradually adjust the search domain of each niche to finally approach the local minima. The solutions found by the QGA are compared with some other Multimodal Optimization(MO) algorithms and are tested on the FCS of the Boeing 747 to demonstrate the effectiveness of the proposed algorithm.展开更多
A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weigh...A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weights of reservoir parameters through sample training and genetic algorithm was used to optimize the initial connection weights of nerve cells in case the neural network fell into a local minimum. Additionally, subordinate functions of each parameter were established to normalize the actual values of parameters of coalbed methane reservoirs in the range between zero and unity. Eventually, evaluation values of all coalbed methane reservoirs could be obtained by using the comprehensive evaluation method, which is the basis to rank the coalbed methane reservoirs in the order of exploitation priority. The greater the evaluation value, the higher the exploitation priority. The ranking method was verified in this paper by ten exploited coalbed methane reservoirs in China. The evaluation results are in agreement with the actual exploitation cases. The method can ensure the truthfulness and credibility of the weights of parameters and avoid the subjectivity caused by experts. Furthermore, the probability of falling into local minima is reduced, because genetic the algorithm is used to optimize the neural network system.展开更多
The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission ...The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.展开更多
Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is ...Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is proposed. The algorithm applies operators such as selection, crossover and mutation to evolve an initial population of diagnostic rules. Especially, a self adaptive method is put forward to regulate the crossover rate and mutation rate. In the end, a knowledge acquisition problem of a simple network fault diagnostic system is simulated, the results of simulation show that the improved approach can solve the problem of convergence better.展开更多
This article seeks to outline an integrated and practical geometric optimization design system (GODS) incorporating hybrid graphical electromagnetic computing-wedge modeling (GRECO-WM) scheme and the genetic algor...This article seeks to outline an integrated and practical geometric optimization design system (GODS) incorporating hybrid graphical electromagnetic computing-wedge modeling (GRECO-WM) scheme and the genetic algorithm (GA) for calculating the radar cross section (RCS) and optimizing the geometric parameters of a large and complex target respectively. A new wedge modeling (WM) scheme is presented for calculating the high-frequency RCS of wedge with only one visible facet based on the method of equivalent currents (MEC). The applications of GODS to 2D cross-section and 3D surface are respectively implemented by choosing an average of monostatic RCS values corresponding to a series of incident angles over a frequency band as the optimum objective function. And the results demonstrate that the RCS can be effectively and conveniently reduced by the GODS presented in this article.展开更多
In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow ...In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.展开更多
a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic...a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic algorithms, namely rapid convergence and attainment of the global optimum. Utilization of an orthogonal experiment method solves the determination of the genetic factors. Combination with an expert system can make best use of the actual experience of the plant operators. Simulation results of typical process systems examples show a good control performance and robustness.展开更多
The existing research of sequential zoning system and simultaneous zoning system mainly focuses on some optimization problems such as workload balance,product assignment and simulation for each system separately.But t...The existing research of sequential zoning system and simultaneous zoning system mainly focuses on some optimization problems such as workload balance,product assignment and simulation for each system separately.But there is little research on comparative study between sequential zoning and simultaneous zoning.In order to help the designers to choose the suitable zoning policy for picker-to-parts system reasonably and quickly,a systemic selection method is presented.Essentially,both zoning and batching are order clustering,so the customer order sheet can be divided into many unit grids.After the time formulation in one-dimensional unit was defined,the time models for each zoning policy in two-dimensional space were established using filling curves and sequence models to link the one-dimensional unit grids.In consideration of "U" shaped dual tour into consideration,the subtraction value of order picking time between sequential zoning and simultaneous zoning was defined as the objective function to select the suitable zoning policy based on time models.As it is convergent enough,genetic algorithm is adopted to find the optimal value of order picking time.In the experimental study,5 different kinds of order/stock keeping unit(SKU) matrices with different densities d and quantities q following uniform distribution were created in order to test the suitability of sequential zoning and simultaneous zoning to different kinds of orders.After parameters setting,experimental orders inputting and iterative computations,the optimal order picking time for each zoning policy was gotten.By observing whether the delta time between them is greater than 0 or not,the suitability of zoning policies for picker-to-parts system were obtained.The significant effect of batch size b,zone number z and density d on suitability was also found by experimental study.The proposed research provides a new method for selection between sequential zoning and simultaneous zoning for picker-to-parts system,and improves the rationality and efficiency of selection process in practical design.展开更多
基金supported by the State Key Program of National Natural Science of China(Grant No.60736025)the National Natural Science Foundation of China(Grant No.60905056)the National Basic Research Program of China(973 Program)(Grant No.2009CB72400102)
文摘This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.
基金Project of China Postdoctoral Science Foundation,China (No. 2012M510982)Special Fund on the Science and Technology Innovation People of Harbin,China (No. 2011RFQXG002)+2 种基金Technology Item of Heilongjiang Provincial Education Committee,China (No.12511088)Postdoctoral Project of Heilongjiang,China (No. LBH-Z10117 )Youth Fund of Harbin University of Science and Technology,China (No. 2011YF030)
文摘In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which was based on standard genetic algorithm and combined with positive feedback mechanism of ant colony algorithm. This method can obtain the precise mathematic model of continuous rotary motor which determines the order of servo system. Firstly, by constructing an appropriate fitness function, the problem of system parameters identification is converted into the problem of system parameter optimization. Secondly, in the given upper and lower bounds a set of optimal parameters are selected to meet the best approximation of the actual system. And the result shows that the identification output can trace the sampling output of actual system, and the error is very small. In addition, another set of experimental data are used to test the identification result. The result shows that the identification parameters can approach the actual system. The experimental results verify the feasibility of this method. And it is fit for the parameter identification of general complex system using the integration algorithm of GA-ACO.
文摘By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identification applications. The simulation results indicate that the method is not only capable of following the changing parameters of the system, but also has improved the identification accuracy compared with that using the least square method.
文摘This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions.
文摘The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-OCESE,which stands for Genetic Algorithm-based Optimization Configuration for Energy Storage in Electric Networks.This is one of the methods suggested in this study,which aims to enhance the sizing,positioning,and operational characteristics of structured ESS under dynamic grid conditions.Particularly,the aim is to maximize efficiency.A multiobjective genetic algorithm,the GA-OCESE framework,considers all these factors simultaneously.Besides considering cost-efficiency,response time,and energy use,the system also considers all these elements simultaneously.This enables it to effectively react to load uncertainty and variations in inputs connected to renewable sources.Results of an experimental assessment conducted on a standardized grid simulation platform indicate that by increasing energy use efficiency by 17.6%and reducing peak-load effects by 22.3%,GA-OCESE outperforms previous heuristic-based methods.This was found by contrasting the outcomes of the assessment with those of the evaluation.The results of the assessment helped to reveal this.The proposed approach will provide utility operators and energy planners with a decision-making tool that is both scalable and adaptable.This technology is particularly well-suited for smart grids,microgrid systems,and power infrastructures that heavily rely on renewable energy.Every technical component has been carefully recorded to ensure accuracy,reproducibility,and relevance across all power systems engineering software uses.This was done to ensure the program’s relevance.
文摘Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember and store some previous parameters is used for identifier. And for its high efficiency and optimization, genetic algorithm is introduced into training RMNN. Simulation results show the effectiveness of the proposed scheme. Under the same training algorithm, the identification performance of RMNN is superior to that of nonrecurrent multilayer neural network (NRMNN).
文摘This study evaluates the undrained uplift capacity of open-caisson anchors embedded in anisotropic clay using Finite Element Limit Analysis(FELA)and a hybrid machine learning framework.The FELA simulations inves-tigate the influence of the radius ratio(R/B),anisotropic ratio(re),interface roughness factor(α),and inclination angle(β).Specifically,the results reveal that increasingβsignificantly enhances Nc,especially as soil behavior approaches isotropy.Higherαimproves resistance at steeper inclinations by mobilizing greater interface shear.Nc increases with re,reflecting enhanced strength under isotropic conditions.To enhance predictive accuracy and generalization,a hybrid machine learning model was developed by integrating Extreme Gradient Boosting(XGBoost)with Genetic Algorithm(GA)and Mutation-Based Genetic Algorithm(MGA)for hyperparameter tuning.Among the models,MGA-XGBoost outperformed GA-XGBoost,achieving higher predictive accuracy(R^(2)=0.996 training,0.993 testing).Furthermore,SHAP analysis consistently identified anisotropic ratio(re)as the most influential factor in predicting uplift capacity,followed by interface roughness factor(α),inclination angle(β),and radius ratio(R/B).The proposed framework serves as a scalable decision-support tool adaptable to various soil types and foundation geometries,offering a more efficient and data-driven approach to uplift-resistant design in anisotropic cohesive soils.
文摘To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms.
基金This project is supported by Aeronautics Foundation of China (No. 00E51022)
文摘To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.
文摘Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into genetic algorithm, we proposed a heuristic genetic algorithm. In the genetic algorithm, we constructed a new operator to maintaining the classification ability. The experiment shows that our algorithm is efficient and effective for minimal reduct, even for the special example that the simple heuristic algorithm can’t get the right result.
基金The project supported by the National Natural Science Foundation of China (10472025)
文摘Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybrid genetic algorithm. From the measured dynamic responses of a hydro generator, an appropriate estimation algorithm is needed to identify the loading parameters, including the main frequencies and amplitudes of vibrating forces. In order to identify parameters in an efficient and robust manner, an optimization method is proposed that combines genetic algorithm with simulated annealing and elitist strategy. The hybrid genetic algorithm is then used to tackle an ill-posed problem of parameter identification, in which the effectiveness of the proposed optimization method is confirmed by its comparison with actual observation data.
基金supported by National Natural Science Foundation of China (Grant No.50875101)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA04Z186)
文摘As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.
文摘This paper develops a Quantum-inspired Genetic Algorithm(QGA) to find the sets of optimal parameters for the wind disturbance alleviation Flight Control System(FCS). To search the problem domain more evenly and uniformly, the lattice rule based stratification method is used to create new chromosomes. The chromosomes are coded and updated according to quantuminspired strategies. A niching method is used to ensure every chromosome can converge to its corresponding local minimum in the optimization process. A parallel archive system is adopted to monitor the chromosomes on-line and save all potential feasible solutions in the optimization process. An adaptive search strategy is used to gradually adjust the search domain of each niche to finally approach the local minima. The solutions found by the QGA are compared with some other Multimodal Optimization(MO) algorithms and are tested on the FCS of the Boeing 747 to demonstrate the effectiveness of the proposed algorithm.
基金EU-China Energy and Environment Programme(Europe Aid/120723/D/SV/CN)Research Fund for the Doctoral Program of Higher Education of China(20030425001)
文摘A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weights of reservoir parameters through sample training and genetic algorithm was used to optimize the initial connection weights of nerve cells in case the neural network fell into a local minimum. Additionally, subordinate functions of each parameter were established to normalize the actual values of parameters of coalbed methane reservoirs in the range between zero and unity. Eventually, evaluation values of all coalbed methane reservoirs could be obtained by using the comprehensive evaluation method, which is the basis to rank the coalbed methane reservoirs in the order of exploitation priority. The greater the evaluation value, the higher the exploitation priority. The ranking method was verified in this paper by ten exploited coalbed methane reservoirs in China. The evaluation results are in agreement with the actual exploitation cases. The method can ensure the truthfulness and credibility of the weights of parameters and avoid the subjectivity caused by experts. Furthermore, the probability of falling into local minima is reduced, because genetic the algorithm is used to optimize the neural network system.
基金National Natural Science Foundation of China(Grant Nos.51805385,71471143)Hubei Provincial Natural Science Foundation of China(Grant No.2018CFB265)Center for Service Science and Engineering of Wuhan University of Science and Technology(Grant No.CSSE2017KA04)
文摘The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.
文摘Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is proposed. The algorithm applies operators such as selection, crossover and mutation to evolve an initial population of diagnostic rules. Especially, a self adaptive method is put forward to regulate the crossover rate and mutation rate. In the end, a knowledge acquisition problem of a simple network fault diagnostic system is simulated, the results of simulation show that the improved approach can solve the problem of convergence better.
基金National Natural Science Foundation of China (20095251024)
文摘This article seeks to outline an integrated and practical geometric optimization design system (GODS) incorporating hybrid graphical electromagnetic computing-wedge modeling (GRECO-WM) scheme and the genetic algorithm (GA) for calculating the radar cross section (RCS) and optimizing the geometric parameters of a large and complex target respectively. A new wedge modeling (WM) scheme is presented for calculating the high-frequency RCS of wedge with only one visible facet based on the method of equivalent currents (MEC). The applications of GODS to 2D cross-section and 3D surface are respectively implemented by choosing an average of monostatic RCS values corresponding to a series of incident angles over a frequency band as the optimum objective function. And the results demonstrate that the RCS can be effectively and conveniently reduced by the GODS presented in this article.
基金Project (No. 50078048) supported by the National Natural Science Foundation of China
文摘In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.
文摘a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic algorithms, namely rapid convergence and attainment of the global optimum. Utilization of an orthogonal experiment method solves the determination of the genetic factors. Combination with an expert system can make best use of the actual experience of the plant operators. Simulation results of typical process systems examples show a good control performance and robustness.
基金supported by National Natural Science Foundation of China (Grant No. 50175064)China Scholarship Council (Grant No. 2008622078)Material Handling Industry of America (Grant No. 12251)
文摘The existing research of sequential zoning system and simultaneous zoning system mainly focuses on some optimization problems such as workload balance,product assignment and simulation for each system separately.But there is little research on comparative study between sequential zoning and simultaneous zoning.In order to help the designers to choose the suitable zoning policy for picker-to-parts system reasonably and quickly,a systemic selection method is presented.Essentially,both zoning and batching are order clustering,so the customer order sheet can be divided into many unit grids.After the time formulation in one-dimensional unit was defined,the time models for each zoning policy in two-dimensional space were established using filling curves and sequence models to link the one-dimensional unit grids.In consideration of "U" shaped dual tour into consideration,the subtraction value of order picking time between sequential zoning and simultaneous zoning was defined as the objective function to select the suitable zoning policy based on time models.As it is convergent enough,genetic algorithm is adopted to find the optimal value of order picking time.In the experimental study,5 different kinds of order/stock keeping unit(SKU) matrices with different densities d and quantities q following uniform distribution were created in order to test the suitability of sequential zoning and simultaneous zoning to different kinds of orders.After parameters setting,experimental orders inputting and iterative computations,the optimal order picking time for each zoning policy was gotten.By observing whether the delta time between them is greater than 0 or not,the suitability of zoning policies for picker-to-parts system were obtained.The significant effect of batch size b,zone number z and density d on suitability was also found by experimental study.The proposed research provides a new method for selection between sequential zoning and simultaneous zoning for picker-to-parts system,and improves the rationality and efficiency of selection process in practical design.