期刊文献+
共找到1,619篇文章
< 1 2 81 >
每页显示 20 50 100
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
1
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
2
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
在线阅读 下载PDF
DOA and Power Estimation Using Genetic Algorithm and Fuzzy Discrete Particle Swarm Optimization 被引量:3
3
作者 Jia-Zhou Liu Zhi-Qin Zhao +1 位作者 Zi-Yuan He Qing-Huo Liu 《Journal of Electronic Science and Technology》 CAS 2014年第1期71-75,共5页
Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a gen... Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO). 展开更多
关键词 Direction of arrival genetic algorithm particle swarm optimization.
在线阅读 下载PDF
Robot stereo vision calibration method with genetic algorithm and particle swarm optimization 被引量:1
4
作者 汪首坤 李德龙 +1 位作者 郭俊杰 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2013年第2期213-221,共9页
Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ... Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation. 展开更多
关键词 robot stereo vision camera calibration genetic algorithm (GA) particle swarm opti-mization (PSO) hybrid intelligent optimization
在线阅读 下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
5
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis optimization particle swarm INTELLIGENCE (PSO) Ant Colony optimization (ACO) genetic algorithm (GA)
在线阅读 下载PDF
Particle Swarm Optimization Algorithm vs Genetic Algorithm to Develop Integrated Scheme for Obtaining Optimal Mechanical Structure and Adaptive Controller of a Robot
6
作者 Rega Rajendra Dilip K. Pratihar 《Intelligent Control and Automation》 2011年第4期430-449,共20页
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula... The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected. 展开更多
关键词 MANIPULATOR optimAL Structure Adaptive CONTROLLER genetic algorithm NEURAL Networks particle swarm optimization
在线阅读 下载PDF
Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm 被引量:2
7
作者 Najad Ayyash Farzad Hejazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期455-474,共20页
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther... Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration. 展开更多
关键词 hybrid optimization algorithm STRUCTURES EARTHQUAKE seismic damper devices particle swarm optimization method gravitational search algorithm
在线阅读 下载PDF
Optimization of Thermal Aware VLSI Non-Slicing Floorplanning Using Hybrid Particle Swarm Optimization Algorithm-Harmony Search Algorithm
8
作者 Sivaranjani Paramasivam Senthilkumar Athappan +1 位作者 Eswari Devi Natrajan Maheswaran Shanmugam 《Circuits and Systems》 2016年第5期562-573,共12页
Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimat... Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution. 展开更多
关键词 VLSI Non-Slicing Floorplan Modified Corner List (MCL) algorithm hybrid particle swarm optimization-Harmony Search algorithm (HPSOHS)
在线阅读 下载PDF
Optimal Linear Phase Finite Impulse Response Band Pass Filter Design Using Craziness Based Particle Swarm Optimization Algorithm
9
作者 SANGEETA Mandal SAKTI Prasad Ghoshal +1 位作者 RAJIB Kar DURBADAL Mandal 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第6期696-703,共8页
An efficient method is proposed for the design of finite impulse response(FIR) filter with arbitrary pass band edge,stop band edge frequencies and transition width.The proposed FIR band stop filter is designed using c... An efficient method is proposed for the design of finite impulse response(FIR) filter with arbitrary pass band edge,stop band edge frequencies and transition width.The proposed FIR band stop filter is designed using craziness based particle swarm optimization(CRPSO) approach.Given the filter specifications to be realized,the CRPSO algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristics.In this paper,for the given problem,the realizations of the optimal FIR band pass filters of different orders have been performed.The simulation results have been compared with those obtained by the well accepted evolutionary algorithms,such as Parks and McClellan algorithm(PMA),genetic algorithm(GA) and classical particle swarm optimization(PSO).Several numerical design examples justify that the proposed optimal filter design approach using CRPSO outperforms PMA and PSO,not only in the accuracy of the designed filter but also in the convergence speed and solution quality. 展开更多
关键词 finite impulse response(FIR) filter particle swarm optimization(PSO) craziness based particle swarm optimization(CRPSO) Parks and McClellan algorithm(PMA) genetic algorithm(GA) optimization
原文传递
Traveling Salesman Problem Using an Enhanced Hybrid Swarm Optimization Algorithm 被引量:2
10
作者 郑建国 伍大清 周亮 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期362-367,共6页
The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was ... The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms. 展开更多
关键词 particle swarm optimization(PSO) ant COLONY optimization(ACO) swarm intelligence TRAVELING SALESMAN problem(TSP) hybrid algorithm
在线阅读 下载PDF
Optimization of Vertical Well Placement by Using a Hybrid Particle Swarm Optimization
11
作者 DONG Xiaojian WU Zhijian +2 位作者 DONG Chao CHEN Zhangxin WANG Hui 《Wuhan University Journal of Natural Sciences》 CAS 2011年第3期237-240,共4页
Locating wells is an important step in oil exploitation. This paper proposes a novel approach, which first combines particle swarm optimization, genetic algorithm, and a reservoir simulation evaluation tool to optimiz... Locating wells is an important step in oil exploitation. This paper proposes a novel approach, which first combines particle swarm optimization, genetic algorithm, and a reservoir simulation evaluation tool to optimize the locations of vertical wells. Simulation results show that the convergence efficiency of our approach outperforms traditional genetic algorithm and overcomes the disadvantage of particle swarm algorithm that would be easily trapped into best-at-local solution so that its optimization result has been significantly improved. 展开更多
关键词 well location optimization particle swarm optimization genetic algorithm (GA) global optimization
原文传递
Brillouin scattering spectrum character extraction based on genetic algorithm and seeker optimization algorithm
12
作者 Zhang Yanjun Jin Peijun +3 位作者 Fu Xinghu Hou Jiaoru Zhang Fangcao Xu Jinrui 《High Technology Letters》 EI CAS 2019年第4期401-407,共7页
A new hybrid optimization method based on genetic algorithm(GA)and seeker optimization algorithm(SOA)is presented in this paper.The hybrid algorithm optimizes SOA by using crossover and mutation operations in GA in or... A new hybrid optimization method based on genetic algorithm(GA)and seeker optimization algorithm(SOA)is presented in this paper.The hybrid algorithm optimizes SOA by using crossover and mutation operations in GA in order to improve the global search ability of SOA.Four algorithms,i.e.particle swarm optimization(PSO),SOA,GA and quantum-behaved particle swarm optimization(GA-QPSO)and GA-SOA are used to process the simulation and experimental data of Brillouin scattering spectrum(BSS)at different temperatures.The results show that GA-SOA improves the accuracy of extracting the center frequency shift and the minimum center frequency of Brillouin scattering spectrum compared with other three algorithms.The shift error is 0.203 MHz.Therefore,GA-SOA can be applied to the accurate extraction of BSS characteristics. 展开更多
关键词 Brillouin scattering spectrum(BSS) seeker optimization algorithm(SOA) genetic algorithm(GA) particle swarm optimization(PSO) Brillouin frequency shift(BFS)
在线阅读 下载PDF
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:12
13
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 particle swarm optimization genetic algorithm Random inertia weight Multi-objective reservoir operation Reservoir group Panjiakou Reservoir
在线阅读 下载PDF
Hybrid Multipopulation Cellular Genetic Algorithm and Its Performance 被引量:2
14
作者 黎明 鲁宇明 揭丽琳 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第4期405-412,共8页
The selection pressure of genetic algorithm reveals the degree of balance between the global exploration and local optimization.A novel algorithm called the hybrid multi-population cellular genetic algorithm(HCGA)is p... The selection pressure of genetic algorithm reveals the degree of balance between the global exploration and local optimization.A novel algorithm called the hybrid multi-population cellular genetic algorithm(HCGA)is proposed,which combines population segmentation with particle swarm optimization(PSO).The control parameters are the number of individuals in the population and the number of subpopulations.By varying these control parameters,changes in selection pressure can be investigated.Population division is found to reduce the selection pressure.In particular,low selection pressure emerges in small and highly divided populations.Besides,slight or mild selection pressure reduces the convergence speed,and thus a new mutation operator accelerates the system.HPCGA is tested in the optimization of four typical functions and the results are compared with those of the conventional cellular genetic algorithm.HPCGA is found to significantly improve global convergence rate,convergence speed and stability.Population diversity is also investigated by HPCGA.Appropriate numbers of subpopulations not only achieve a better tradeoff between global exploration and local exploitation,but also greatly improve the optimization performance of HPCGA.It is concluded that HPCGA can elucidate the scientific basis for selecting the efficient numbers of subpopulations. 展开更多
关键词 cellular genetic algorithm particle swarm optimization MULTISPECIES selection pressure DIVERSITY
在线阅读 下载PDF
An Effective Non-Commutative Encryption Approach with Optimized Genetic Algorithm for Ensuring Data Protection in Cloud Computing 被引量:2
15
作者 S.Jerald Nirmal Kumar S.Ravimaran M.M.Gowthul Alam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期671-697,共27页
Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storag... Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storage and access,our proposed work designs a Novel Quantum Key Distribution(QKD)relying upon a non-commutative encryption framework.It makes use of a Novel Quantum Key Distribution approach,which guarantees high level secured data transmission.Along with this,a shared secret is generated using Diffie Hellman(DH)to certify secured key generation at reduced time complexity.Moreover,a non-commutative approach is used,which effectively allows the users to store and access the encrypted data into the cloud server.Also,to prevent data loss or corruption caused by the insiders in the cloud,Optimized Genetic Algorithm(OGA)is utilized,which effectively recovers the data and retrieve it if the missed data without loss.It is then followed with the decryption process as if requested by the user.Thus our proposed framework ensures authentication and paves way for secure data access,with enhanced performance and reduced complexities experienced with the prior works. 展开更多
关键词 Cloud computing quantum key distribution Diffie Hellman non-commutative approach genetic algorithm particle swarm optimization
在线阅读 下载PDF
Model parameters estimation of aero-engine based on hybrid optimization algorithm 被引量:1
16
作者 LI Qiu-hong LI Ye-bo JIANG Dian-wen 《航空动力学报》 EI CAS CSCD 北大核心 2011年第7期1665-1671,共7页
A hybrid optimization algorithm for the time-domain identification of multivariable,state space model for aero-engine was presented in this paper.The optimization procedure runs particle swarm optimization(PSO) and le... A hybrid optimization algorithm for the time-domain identification of multivariable,state space model for aero-engine was presented in this paper.The optimization procedure runs particle swarm optimization(PSO) and least squares optimization(LSO) "in series".PSO starts from an initial population and searches for the optimum solution by updating generations.However,it can sometimes run into a suboptimal solution.Then LSO can start from the suboptimal solution of PSO,and get an optimum solution by conjugate gradient algorithm.The algorithm is suitable for the high-order multivariable system which has many parameters to be estimated in wide ranges.Hybrid optimization algorithm is applied to estimate the parameters of a 4-input 4-output state variable model(SVM) for aero-engine.The simulation results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 AERO-ENGINE state variable model(SVM) particle swarm optimization(PSO) least squares optimization(LSO) hybrid optimization algorithm
原文传递
1D regularization inversion combining particle swarm optimization and least squares method 被引量:1
17
作者 Su Peng Yang Jin Xu LiuYang 《Applied Geophysics》 SCIE CSCD 2023年第1期77-87,131,132,共13页
For geophysical inversion problems,deterministic inversion methods can easily fall into local optimal solutions,while stochastic optimization methods can theoretically converge to global optimal solutions.These proble... For geophysical inversion problems,deterministic inversion methods can easily fall into local optimal solutions,while stochastic optimization methods can theoretically converge to global optimal solutions.These problems have always been a concern for researchers.Among many stochastic optimization methods,particle swarm optimization(PSO)has been applied to solve geophysical inversion problems due to its simple principle and the fact that only a few parameters require adjustment.To overcome the nonuniqueness of inversion,model constraints can be added to PSO optimization.However,using fixed regularization parameters in PSO iteration is equivalent to keeping the default model constraint at a certain level,yielding an inversion result that is considerably affected by the model constraint.This study proposes a hybrid method that combines the regularized least squares method(RLSM)with the PSO method.The RLSM is used to improve the global optimal particle and accelerate convergence,while the adaptive regularization strategy is used to update the regularization parameters to avoid the influence of model constraints on the inversion results.Further,the inversion results of the RLSM and hybrid algorithm are compared and analyzed by considering the audio magnetotelluric synthesis and field data as examples.Experiments show that the proposed hybrid method is superior to the RLSM.Furthermore,compared with the standard PSO algorithm,the hybrid algorithm needs a broader model space but a smaller particle swarm and fewer iteration steps,thus reducing the prior conditions and the computational cost used in the inversion. 展开更多
关键词 particle swarm optimization least squares method hybrid algorithm adaptive regularization 1D inversion
在线阅读 下载PDF
Hybrid Global Optimization Algorithm for Feature Selection 被引量:1
18
作者 Ahmad Taher Azar Zafar Iqbal Khan +1 位作者 Syed Umar Amin Khaled M.Fouad 《Computers, Materials & Continua》 SCIE EI 2023年第1期2021-2037,共17页
This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing ... This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing into the combined power of TVAC(Time-Variant Acceleration Coefficients)and IW(Inertial Weight).Proposed algorithm has been tested against linear,non-linear,traditional,andmultiswarmbased optimization algorithms.An experimental study is performed in two stages to assess the proposed PLTVACIW-PSO.Phase I uses 12 recognized Standard Benchmarks methods to evaluate the comparative performance of the proposed PLTVACIWPSO vs.IW based Particle Swarm Optimization(PSO)algorithms,TVAC based PSO algorithms,traditional PSO,Genetic algorithms(GA),Differential evolution(DE),and,finally,Flower Pollination(FP)algorithms.In phase II,the proposed PLTVACIW-PSO uses the same 12 known Benchmark functions to test its performance against the BAT(BA)and Multi-Swarm BAT algorithms.In phase III,the proposed PLTVACIW-PSO is employed to augment the feature selection problem formedical datasets.This experimental study shows that the planned PLTVACIW-PSO outpaces the performances of other comparable algorithms.Outcomes from the experiments shows that the PLTVACIW-PSO is capable of outlining a feature subset that is capable of enhancing the classification efficiency and gives the minimal subset of the core features. 展开更多
关键词 particle swarm optimization(PSO) time-variant acceleration coefficients(TVAC) genetic algorithms differential evolution feature selection medical data
在线阅读 下载PDF
Hybrid anti-prematuration optimization algorithm
19
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
在线阅读 下载PDF
Intelligent Optimization Algorithms to VDA of Models with on/off Parameterizations 被引量:8
20
作者 方昌銮 郑琴 +1 位作者 吴文华 戴毅 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第6期1181-1197,共17页
Some variational data assimilation (VDA) problems of time- and space-discrete models with on/off parameterizations can be regarded as non-smooth optimization problems. Same as the sub-gradient type method, intellige... Some variational data assimilation (VDA) problems of time- and space-discrete models with on/off parameterizations can be regarded as non-smooth optimization problems. Same as the sub-gradient type method, intelligent optimization algorithms, which are widely used in engineering optimization, can also be adopted in VDA in virtue of their no requirement of cost function's gradient (or sub-gradient) and their capability of global convergence. Two typical intelligent optimization algorithms, genetic algorithm (GA) and particle swarm optimization (PSO), are introduced to VDA of modified Lorenz equations with on-off parameterizations, then two VDA schemes are proposed, that is, GA based VDA (GA-VDA) and PSO based VDA (PSO-VDA). After revealing the advantage of GA and PSO over conventional adjoint methods in the ability of global searching at the existence of cost function's discontinuity induced by on-off switches, sensitivities of GA-VDA and PSO-VDA to population size, observational noise, model error and observational density are detailedly analyzed. It's shown that, in the context of modified Lorenz equations, with proper population size, GA-VDA and PSO-VDA can effectively estimate the global optimal solution, while PSO-VDA consumes much less computational time than GA-VDA with the same population size, and requires a much lower population size with nearly the same results, both methods are not very sensitive to observation noise and model error, while PSO-VDA shows a better performance with observational noise than GA-VDA. It is encouraging that both methods are not sensitive to observational density, especially PSO-VDA, using which almost the same perfect assimilation results can be obtained with comparatively sparse observations. 展开更多
关键词 ON-OFF genetic algorithm particle swarm optimization variational data assimilation sensitivity
在线阅读 下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部