This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curric...This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curricula,it elucidates its advantages and operational mechanisms in interdisciplinary PBL.Combining case studies and empirical research,the investigation proposes implementation pathways and strategies for the generative AI-enhanced interdisciplinary PBL model,detailing specific applications across three phases:project preparation,implementation,and evaluation.The research demonstrates that generative AI-enabled interdisciplinary project-based learning can effectively enhance students’learning motivation,interdisciplinary thinking capabilities,and innovative competencies,providing new conceptual frameworks and practical approaches for educational model innovation.展开更多
Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasin...Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.展开更多
The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ...The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.展开更多
This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financ...This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financial decision-making within a dual framework of dynamic knowledge evolution and risk control.The research reveals that generative AI,with its superior data processing,pattern recognition,and autonomous learning capabilities,can transcend the limitations of traditional decision-making models,facilitating a significant shift from causal inference to probabilistic creation in decision-making paradigms.By systematically constructing an intelligent financial decision-making model that includes data governance,core engine,and decision output layers,the study clarifies the functional roles and collaborative mechanisms of each layer.Additionally,it addresses key challenges in technology application,institutional adaptation,and organizational transformation by proposing systematic strategies for technical risk management,institutional innovation,and organizational capability enhancement,aiming to provide robust theoretical support and practical guidance for the intelligent transformation of corporate financial decision-making.展开更多
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ...Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design.展开更多
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth...Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.展开更多
Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the applic...Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.展开更多
Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective...Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective way of sorting.Owing to significant domain gaps between natural images and kitchen waste images,it is difficult to reflect the characteristics of diverse scales and dense distribution in kitchen waste based on an ImageNet pre-trained model,leading to poor generalisation.In this article,the authors propose the first pre-trained model for kitchen waste sorting called KitWaSor,which combines both contrastive learning(CL)and masked image modelling(MIM)through self-supervised learning(SSL).First,to address the issue of diverse scales,the authors propose a mixed masking strategy by introducing an incomplete masking branch based on the original random masking branch.It prevents the complete loss of small-scale objects while avoiding excessive leakage of large-scale object pixels.Second,to address the issue of dense distribution,the authors introduce semantic consistency constraints on the basis of the mixed masking strategy.That is,object semantic reasoning is performed through semantic consistency constraints to compensate for the lack of contextual information.To train KitWaSor,the authors construct the first million-level kitchen waste dataset across seasonal and regional distributions,named KWD-Million.Extensive experiments show that KitWaSor achieves state-of-the-art(SOTA)performance on the two most relevant downstream tasks for kitchen waste sorting(i.e.image classification and object detection),demonstrating the effectiveness of the proposed KitWaSor.展开更多
Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for mo...Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for model training and the overshadowing of crucial features within sequence concatenation.The current work proposes a less data-consuming model incorporating a pre-trained gene sequence model and a mutual information inference operator.Our methodology utilizes gene alignment and deduplication algorithms to preprocess gene sequences,enhancing the model’s capacity to discern and focus on distinctions among input gene pairs.The model,i.e.,DNA Pretrained Cross-Immunity Protection Inference model(DPCIPI),outperforms state-of-theart(SOTA)models in predicting hemagglutination inhibition titer from influenza viral gene sequences only.Improvement in binary cross-immunity prediction is 1.58%in F1,2.34%in precision,1.57%in recall,and 1.57%in Accuracy.For multilevel cross-immunity improvements,the improvement is 2.12%in F1,3.50%in precision,2.19%in recall,and 2.19%in Accuracy.Our study showcases the potential of pre-trained gene models to improve predictions of antigenic variation and cross-immunity.With expanding gene data and advancements in pre-trained models,this approach promises significant impacts on vaccine development and public health.展开更多
With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi...With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory.展开更多
We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of t...We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains.展开更多
Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in o...Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder(CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions(M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections,effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure.The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.展开更多
Recently,generative artificial intelligence(GenAI)has developed into a new form of technology that can create copy,image,audio,and video content and adapt it to individual preferences on every channel and moment autom...Recently,generative artificial intelligence(GenAI)has developed into a new form of technology that can create copy,image,audio,and video content and adapt it to individual preferences on every channel and moment automatically.But most fail at proof-of-concept,as the pipelines needed to govern data,generate it controllably,deliver it,and do causal evaluation are absent or poorly aligned.This paper puts forward a practical end-to-end framework concerning personalized advertising driven by GenAI,which combines representation learning,constrained generation,and experimentation into a single operating cycle.First,we pick a modular architecture:profiles and contexts go into controllable large language and diffusion models that yield brand-safe assets under deterministic conditioning,which are chosen via a contextual bandit and vetted by policy and equality guardrails.Second,we give a measurement stack going from straightforward A/B/n tests to doubly-robust uplift modeling,making it possible to find out diverse treatment effects that are good to use in business metrics(incremental conversions and profit).Third,we operationalize latency budgets,humans in the loop,red teams,safety filters,and post-deployment monitoring with clear escalation paths.We focus throughout the paper on reproducibility,privacy(consent,privacy,differential privacy,on-device inference),and on GDPR/CCPA-like governance specifications.We end on our actionable blueprint,algorithmic choices,sample prompts,KPIs,and step-wise rollout to achieve trustworthy performance upgrades without putting creative quality,fairness,or compliance to the test.展开更多
The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequ...The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.展开更多
The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films...The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality.展开更多
BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety d...BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety disorder(GAD).This comorbidity exacerbates breathing difficulties,activity limitations,and social isolation.While previous studies predominantly employed the GAD 7-item scale for screening,this approach is somewhat subjective.The current literature on predictive models for GAD risk in patients with COPD is limited.AIM To construct and validate a GAD risk prediction model to aid healthcare professionals in preventing the onset of GAD.METHODS This retrospective analysis encompassed patients with COPD treated at our institution from July 2021 to February 2024.The patients were categorized into a modeling(MO)group and a validation(VA)group in a 7:3 ratio on the basis of the occurrence of GAD.Univariate and multivariate logistic regression analyses were utilized to construct the risk prediction model,which was visualized using forest plots.The model’s performance was evaluated using Hosmer-Lemeshow(H-L)goodness-of-fit test and receiver operating characteristic(ROC)curve analysis.RESULTS A total of 271 subjects were included,with 190 in the MO group and 81 in the VA group.GAD was identified in 67 patients with COPD,resulting in a prevalence rate of 24.72%(67/271),with 49 cases(18.08%)in the MO group and 18 cases(22.22%)in the VA group.Significant differences were observed between patients with and without GAD in terms of educational level,average household income,smoking history,smoking index,number of exacerbations in the past year,cardiovascular comorbidities,disease knowledge,and personality traits(P<0.05).Multivariate logistic regression analysis revealed that lower education levels,household income<3000 China yuan,smoking history,smoking index≥400 cigarettes/year,≥two exacerbations in the past year,cardiovascular comorbidities,complete lack of disease information,and introverted personality were significant risk factors for GAD in the MO group(P<0.05).ROC analysis indicated that the area under the curve for predicting GAD in the MO and VA groups was 0.978 and 0.960.The H-L test yieldedχ^(2) values of 6.511 and 5.179,with P=0.275 and 0.274.Calibration curves demonstrated good agreement between predicted and actual GAD occurrence risks.CONCLUSION The developed predictive model includes eight independent risk factors:Educational level,household income,smoking history,smoking index,number of exacerbations in the past year,presence of cardiovascular comorbidities,level of disease knowledge,and personality traits.This model effectively predicts the onset of GAD in patients with COPD,enabling early identification of high-risk individuals and providing a basis for early preventive interventions by nursing staff.展开更多
The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environmen...The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences.展开更多
The advancement of generative AI has reshaped EFL education,particularly in EFL writing.This qualitative case study investigates the perceptions of Chinese college students and EFL teachers towards the integration of ...The advancement of generative AI has reshaped EFL education,particularly in EFL writing.This qualitative case study investigates the perceptions of Chinese college students and EFL teachers towards the integration of Gen AI in EFL writing.The research involved semi-structured interviews with 13 students and 10 EFL teachers.Thematic analysis,guided by the Technology Acceptance Model(TAM),was employed to analyze the qualitative data.The findings reveal the perceptions of students and teachers regarding the role of generative AI in EFL writing.Regarding usefulness,students appreciate Gen AI for reducing writing difficulty and enhancing efficiency,though some note that it may produce logical flaws and misinformation.Teachers share similar perceptions,but stress effectiveness depends on students’language level.Some teachers also advocate traditional writing initially to build foundational skills.On the ease of use,most students find it easy interacting with Gen AI but mention dialogical understanding challenges.Both students and teachers stress clear prompts are crucial,indicating“AI interaction literacy”should be part of teaching.Moreover,teachers worry that Gen AI’s ease of use may lead to over-reliance.These results reveal contradicting goals of using Gen AI:students value efficiency,while teachers focus on ability cultivation.These insights guide more effective integration of Gen AI in EFL writing education.展开更多
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bam...The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas.展开更多
文摘This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curricula,it elucidates its advantages and operational mechanisms in interdisciplinary PBL.Combining case studies and empirical research,the investigation proposes implementation pathways and strategies for the generative AI-enhanced interdisciplinary PBL model,detailing specific applications across three phases:project preparation,implementation,and evaluation.The research demonstrates that generative AI-enabled interdisciplinary project-based learning can effectively enhance students’learning motivation,interdisciplinary thinking capabilities,and innovative competencies,providing new conceptual frameworks and practical approaches for educational model innovation.
基金supported by Shanghai Science and Technology Commission Project(No.21DZ1201502)Shanghai Municipal Bureau of Ecology and Environment(Shanghai Environ-mental Science[2023]No.40)+1 种基金the Interdisciplinary Joint Research Project of Tongji University(No.2022-4-YB-12)Shanghai Science and Technology Commission Project(No.22DZ2200200).
文摘Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.
文摘The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.
文摘This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financial decision-making within a dual framework of dynamic knowledge evolution and risk control.The research reveals that generative AI,with its superior data processing,pattern recognition,and autonomous learning capabilities,can transcend the limitations of traditional decision-making models,facilitating a significant shift from causal inference to probabilistic creation in decision-making paradigms.By systematically constructing an intelligent financial decision-making model that includes data governance,core engine,and decision output layers,the study clarifies the functional roles and collaborative mechanisms of each layer.Additionally,it addresses key challenges in technology application,institutional adaptation,and organizational transformation by proposing systematic strategies for technical risk management,institutional innovation,and organizational capability enhancement,aiming to provide robust theoretical support and practical guidance for the intelligent transformation of corporate financial decision-making.
基金supported by the Yonsei University graduate school Department of Integrative Biotechnology.
文摘Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grant No.42175049)the Guangdong Meteorological Service Science and Technology Research Project(Grant No.GRMC2021M01)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)for computational support and Prof.Shiming XIANG for many useful discussionsNiklas BOERS acknowledges funding from the Volkswagen foundation.
文摘Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.
基金supported by the National Natural Science Foundation of China(Grant No.81974355 and No.82172524).
文摘Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC1910402。
文摘Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective way of sorting.Owing to significant domain gaps between natural images and kitchen waste images,it is difficult to reflect the characteristics of diverse scales and dense distribution in kitchen waste based on an ImageNet pre-trained model,leading to poor generalisation.In this article,the authors propose the first pre-trained model for kitchen waste sorting called KitWaSor,which combines both contrastive learning(CL)and masked image modelling(MIM)through self-supervised learning(SSL).First,to address the issue of diverse scales,the authors propose a mixed masking strategy by introducing an incomplete masking branch based on the original random masking branch.It prevents the complete loss of small-scale objects while avoiding excessive leakage of large-scale object pixels.Second,to address the issue of dense distribution,the authors introduce semantic consistency constraints on the basis of the mixed masking strategy.That is,object semantic reasoning is performed through semantic consistency constraints to compensate for the lack of contextual information.To train KitWaSor,the authors construct the first million-level kitchen waste dataset across seasonal and regional distributions,named KWD-Million.Extensive experiments show that KitWaSor achieves state-of-the-art(SOTA)performance on the two most relevant downstream tasks for kitchen waste sorting(i.e.image classification and object detection),demonstrating the effectiveness of the proposed KitWaSor.
基金supported by the Bill & Melinda Gates Foundation and the Minderoo Foundation
文摘Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for model training and the overshadowing of crucial features within sequence concatenation.The current work proposes a less data-consuming model incorporating a pre-trained gene sequence model and a mutual information inference operator.Our methodology utilizes gene alignment and deduplication algorithms to preprocess gene sequences,enhancing the model’s capacity to discern and focus on distinctions among input gene pairs.The model,i.e.,DNA Pretrained Cross-Immunity Protection Inference model(DPCIPI),outperforms state-of-theart(SOTA)models in predicting hemagglutination inhibition titer from influenza viral gene sequences only.Improvement in binary cross-immunity prediction is 1.58%in F1,2.34%in precision,1.57%in recall,and 1.57%in Accuracy.For multilevel cross-immunity improvements,the improvement is 2.12%in F1,3.50%in precision,2.19%in recall,and 2.19%in Accuracy.Our study showcases the potential of pre-trained gene models to improve predictions of antigenic variation and cross-immunity.With expanding gene data and advancements in pre-trained models,this approach promises significant impacts on vaccine development and public health.
基金Project supported by the Guangdong Basic and Applied Basic Research Foundation of China(No.2023A1515012809)the Natural Science Foundation of Shaanxi Province of China(No.2023-JC-YB-073)the Fundamental Research Funds for the Central Universities of China(No.D5000230066)。
文摘With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory.
文摘We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains.
基金supported by the National Nature Science Foundation of China (Nos. 61671362 and 62071366)。
文摘Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder(CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions(M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections,effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure.The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.
文摘Recently,generative artificial intelligence(GenAI)has developed into a new form of technology that can create copy,image,audio,and video content and adapt it to individual preferences on every channel and moment automatically.But most fail at proof-of-concept,as the pipelines needed to govern data,generate it controllably,deliver it,and do causal evaluation are absent or poorly aligned.This paper puts forward a practical end-to-end framework concerning personalized advertising driven by GenAI,which combines representation learning,constrained generation,and experimentation into a single operating cycle.First,we pick a modular architecture:profiles and contexts go into controllable large language and diffusion models that yield brand-safe assets under deterministic conditioning,which are chosen via a contextual bandit and vetted by policy and equality guardrails.Second,we give a measurement stack going from straightforward A/B/n tests to doubly-robust uplift modeling,making it possible to find out diverse treatment effects that are good to use in business metrics(incremental conversions and profit).Third,we operationalize latency budgets,humans in the loop,red teams,safety filters,and post-deployment monitoring with clear escalation paths.We focus throughout the paper on reproducibility,privacy(consent,privacy,differential privacy,on-device inference),and on GDPR/CCPA-like governance specifications.We end on our actionable blueprint,algorithmic choices,sample prompts,KPIs,and step-wise rollout to achieve trustworthy performance upgrades without putting creative quality,fairness,or compliance to the test.
基金Projects(52008403,52378421)supported by the National Natural Science Foundation of ChinaProject(2022-Key-10)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(202207)supported by the Hunan Provincial Transportation Science and Technology,China。
文摘The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.
文摘The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality.
基金Supported by the Henan Provincial Health Commission,No.232102310145.
文摘BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety disorder(GAD).This comorbidity exacerbates breathing difficulties,activity limitations,and social isolation.While previous studies predominantly employed the GAD 7-item scale for screening,this approach is somewhat subjective.The current literature on predictive models for GAD risk in patients with COPD is limited.AIM To construct and validate a GAD risk prediction model to aid healthcare professionals in preventing the onset of GAD.METHODS This retrospective analysis encompassed patients with COPD treated at our institution from July 2021 to February 2024.The patients were categorized into a modeling(MO)group and a validation(VA)group in a 7:3 ratio on the basis of the occurrence of GAD.Univariate and multivariate logistic regression analyses were utilized to construct the risk prediction model,which was visualized using forest plots.The model’s performance was evaluated using Hosmer-Lemeshow(H-L)goodness-of-fit test and receiver operating characteristic(ROC)curve analysis.RESULTS A total of 271 subjects were included,with 190 in the MO group and 81 in the VA group.GAD was identified in 67 patients with COPD,resulting in a prevalence rate of 24.72%(67/271),with 49 cases(18.08%)in the MO group and 18 cases(22.22%)in the VA group.Significant differences were observed between patients with and without GAD in terms of educational level,average household income,smoking history,smoking index,number of exacerbations in the past year,cardiovascular comorbidities,disease knowledge,and personality traits(P<0.05).Multivariate logistic regression analysis revealed that lower education levels,household income<3000 China yuan,smoking history,smoking index≥400 cigarettes/year,≥two exacerbations in the past year,cardiovascular comorbidities,complete lack of disease information,and introverted personality were significant risk factors for GAD in the MO group(P<0.05).ROC analysis indicated that the area under the curve for predicting GAD in the MO and VA groups was 0.978 and 0.960.The H-L test yieldedχ^(2) values of 6.511 and 5.179,with P=0.275 and 0.274.Calibration curves demonstrated good agreement between predicted and actual GAD occurrence risks.CONCLUSION The developed predictive model includes eight independent risk factors:Educational level,household income,smoking history,smoking index,number of exacerbations in the past year,presence of cardiovascular comorbidities,level of disease knowledge,and personality traits.This model effectively predicts the onset of GAD in patients with COPD,enabling early identification of high-risk individuals and providing a basis for early preventive interventions by nursing staff.
基金supported by the Fujian Provincial Science and Technology Program“University-Industry Cooperation Project”(2024Y4015)National Key R&D Plan of Strategic International Scientific and Technological Innovation Cooperation Project(2018YFE0207800).
文摘The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences.
文摘The advancement of generative AI has reshaped EFL education,particularly in EFL writing.This qualitative case study investigates the perceptions of Chinese college students and EFL teachers towards the integration of Gen AI in EFL writing.The research involved semi-structured interviews with 13 students and 10 EFL teachers.Thematic analysis,guided by the Technology Acceptance Model(TAM),was employed to analyze the qualitative data.The findings reveal the perceptions of students and teachers regarding the role of generative AI in EFL writing.Regarding usefulness,students appreciate Gen AI for reducing writing difficulty and enhancing efficiency,though some note that it may produce logical flaws and misinformation.Teachers share similar perceptions,but stress effectiveness depends on students’language level.Some teachers also advocate traditional writing initially to build foundational skills.On the ease of use,most students find it easy interacting with Gen AI but mention dialogical understanding challenges.Both students and teachers stress clear prompts are crucial,indicating“AI interaction literacy”should be part of teaching.Moreover,teachers worry that Gen AI’s ease of use may lead to over-reliance.These results reveal contradicting goals of using Gen AI:students value efficiency,while teachers focus on ability cultivation.These insights guide more effective integration of Gen AI in EFL writing education.
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
基金supported by the Ministry of Agriculture,Forestry,and Fisheries of Japan (25093 C)JSPS KAKENHI (JP23H02262)
文摘The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas.