期刊文献+
共找到862篇文章
< 1 2 44 >
每页显示 20 50 100
Design of Dual-Wavelength Bifocal Metalens Based on Generative Adversarial Network Model
1
作者 LIU Gangcheng WANG Junkai +4 位作者 LIN Sen WU Binhe WANG Chunrui ZHOU Jian SUN Hao 《Journal of Donghua University(English Edition)》 2025年第2期168-176,共9页
Multifocal metalenses are of great concern in optical communications,optical imaging and micro-optics systems,but their design is extremely challenging.In recent years,deep learning methods have provided novel solutio... Multifocal metalenses are of great concern in optical communications,optical imaging and micro-optics systems,but their design is extremely challenging.In recent years,deep learning methods have provided novel solutions to the design of optical planar devices.Here,an approach is proposed to explore the use of generative adversarial networks(GANs)to realize the design of metalenses with different focusing positions at dual wavelengths.This approach includes a forward network and an inverse network,where the former predicts the optical response of meta-atoms and the latter generates structures that meet specific requirements.Compared to the traditional search method,the inverse network demonstrates higher precision and efficiency in designing a dual-wavelength bifocal metalens.The results will provide insights and methodologies for the design of tunable wavelength metalenses,while also highlighting the potential of deep learning in optical device design. 展开更多
关键词 generative adversarial network(gan) metalens forward network inverse design
在线阅读 下载PDF
Data-augmented landslide displacement prediction using generative adversarial network 被引量:3
2
作者 Qi Ge Jin Li +2 位作者 Suzanne Lacasse Hongyue Sun Zhongqiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4017-4033,共17页
Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limit... Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas. 展开更多
关键词 Machine learning(ML) Time series generative adversarial network(gan) Three Gorges reservoir(TGR) Landslide displacement prediction
在线阅读 下载PDF
Magnetic Resonance Image Super-Resolution Based on GAN and Multi-Scale Residual Dense Attention Network
3
作者 GUAN Chunling YU Suping +1 位作者 XU Wujun FAN Hong 《Journal of Donghua University(English Edition)》 2025年第4期435-441,共7页
The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image... The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality. 展开更多
关键词 magnetic resonance(MR) image super-resolution(SR) attention mechanism generative adversarial network(gan) multi-scale convolution
在线阅读 下载PDF
基于SE-AdvGAN的图像对抗样本生成方法研究 被引量:1
4
作者 赵宏 宋馥荣 李文改 《计算机工程》 北大核心 2025年第2期300-311,共12页
对抗样本是评估深度神经网络(DNN)鲁棒性和揭示其潜在安全隐患的重要手段。基于生成对抗网络(GAN)的对抗样本生成方法(AdvGAN)在生成图像对抗样本方面取得显著进展,但该方法生成的扰动稀疏性不足且幅度较大,导致对抗样本的真实性较低。... 对抗样本是评估深度神经网络(DNN)鲁棒性和揭示其潜在安全隐患的重要手段。基于生成对抗网络(GAN)的对抗样本生成方法(AdvGAN)在生成图像对抗样本方面取得显著进展,但该方法生成的扰动稀疏性不足且幅度较大,导致对抗样本的真实性较低。为解决这一问题,基于AdvGAN提出一种改进的图像对抗样本生成方法(SE-AdvGAN)。SE-AdvGAN通过构造SE注意力生成器和SE残差判别器来提高扰动的稀疏性。SE注意力生成器用于提取图像关键特征,限制扰动生成位置,SE残差判别器指导生成器避免生成无关扰动。同时,在SE注意力生成器的损失函数中加入以l_(2)范数为基准的边界损失以限制扰动的幅度,从而提高对抗样本的真实性。实验结果表明,在白盒攻击场景下,SE-AdvGAN相较于现有方法生成的对抗样本扰动稀疏性更高、幅度更小,并且在不同目标模型上均取得了更好的攻击效果,说明SE-AdvGAN生成的高质量对抗样本可以更有效地评估DNN模型的鲁棒性。 展开更多
关键词 对抗样本 生成对抗网络 稀疏扰动 深度神经网络 鲁棒性
在线阅读 下载PDF
BSGAN-GP:类别均衡驱动的半监督图像识别模型 被引量:1
5
作者 胡静 张汝敏 连炳全 《中国图象图形学报》 北大核心 2025年第1期95-109,共15页
目的已有的深度学习图像识别模型严重依赖于大量专业人员手工标记的数据,这些专业图像标签信息难以获取,人工标记代价昂贵。实际场景中的数据集大多具有不平衡性,正负样本偏差严重导致模型在拟合时常偏向多数类,对少数类的识别精度不足... 目的已有的深度学习图像识别模型严重依赖于大量专业人员手工标记的数据,这些专业图像标签信息难以获取,人工标记代价昂贵。实际场景中的数据集大多具有不平衡性,正负样本偏差严重导致模型在拟合时常偏向多数类,对少数类的识别精度不足。这严重阻碍了深度学习在实际图像识别中的广泛应用。方法结合半监督生成式对抗网络(semi-supervised generative adversarial netowrk)提出了一种新的平衡模型架构BSGAN-GP(balancing semi-supervised generative adversarial network-gradient penalty),使得半监督生成式对抗网络的鉴别器可以公平地判别每一个类。其中,提出的类别均衡随机选择算法(class balancing random selection,CBRS)可以解决图像样本类别不均导致少数类识别准确度低的问题。将真实数据中有标签数据按类别随机选择,使得输入的有标签数据每个类别都有相同的数量,然后将训练后参数固定的生成器NetG生成每个类同等数量的假样本输入鉴别器,更新鉴别器NetD保证了鉴别器可以公平地判别所有类;同时BSGAN-GP在鉴别器损失函数中添加了一个额外的梯度惩罚项,使得模型训练更稳定。结果实验在3个主流数据集上与9种图像识别方法(包含6种半监督方法和3种全监督方法)进行了比较。为了证明对少数类的识别准确度提升,制定了3个数据集的不平衡版本。在Fashion-MNIST数据集中,相比于基线模型,总体准确率提高了3.281%,少数类识别率提升了7.14%;在MNIST数据集中,相比于基线模型,对应的4个少数类识别率提升了2.68%~7.40%;在SVHN(street view house number)数据集中,相比于基线模型,总体准确率提高了3.515%。同时也在3个数据集中进行了合成图像质量对比以验证CBRS算法的有效性,其少数类合成图像质量以及数量的提升证明了其效果。消融实验评估了所提出模块CBRS与引进模块在网络中的重要性。结论本文所提出的BSGAN-GP模型能够实现更公平的图像识别以及更高质量的合成图像结果。实验结果开放源代码地址为https://github.com/zrm0616/BSGAN-GP.git。 展开更多
关键词 深度学习 半监督学习(SSL) 生成式对抗网络(gan) 不平衡性图像识别 梯度惩罚
原文传递
基于GAN和Transformer模型组合的格陵兰地区PWV短时预报方法
6
作者 张胜凯 胡希成 +4 位作者 龚力 雷锦韬 李文浩 马超 肖峰 《大地测量与地球动力学》 北大核心 2025年第9期881-887,893,共8页
基于2010—2018年GPS反演的PWV时间序列数据以及同时期ERA5再分析资料计算的格陵兰地区PWV数据,采用深度学习中的生成对抗网络模型(GAN)和Transformer神经网络模型组合,实现由GPS-PWV数据对格陵兰地区PWV数据的短时预报。采用2019年的E... 基于2010—2018年GPS反演的PWV时间序列数据以及同时期ERA5再分析资料计算的格陵兰地区PWV数据,采用深度学习中的生成对抗网络模型(GAN)和Transformer神经网络模型组合,实现由GPS-PWV数据对格陵兰地区PWV数据的短时预报。采用2019年的ERA5数据对预测结果进行评估,结果表明,模型在大部分地区表现较好,RMSE优于4.5 mm,相关系数大于0.7。在春、秋、冬季,相关系数均高于0.5;受天气剧烈变化影响,夏季少部分时间相关系数略低。该方法能够预测格陵兰地区PWV的空间分布和随时间的变化情况。 展开更多
关键词 生成对抗网络 TRANSFORMER GPS 格陵兰 PWV 短时预报
在线阅读 下载PDF
基于自编码器GAN数据增强的工业小目标缺陷检测 被引量:3
7
作者 周思聪 向峰 +1 位作者 李红军 左颖 《现代制造工程》 北大核心 2025年第2期101-108,共8页
工业缺陷图像样本是工业产品缺陷检测、分类和分级的基础数据。针对工业缺陷检测目前仍存在复杂环境下的目标检测困难、样本数量不足导致特征提取差等问题,提出了一种预训练的自编码器生成对抗网络。用预训练的自编码器代替基础生成对... 工业缺陷图像样本是工业产品缺陷检测、分类和分级的基础数据。针对工业缺陷检测目前仍存在复杂环境下的目标检测困难、样本数量不足导致特征提取差等问题,提出了一种预训练的自编码器生成对抗网络。用预训练的自编码器代替基础生成对抗网络(GAN)的生成网络,引导生成网络更好地融合数据特征。结合目标图像的特征重新设计一个编码器-解码器损失函数来替换GAN的对抗损失函数。利用钢卷端面缺陷数据集进行试验。试验结果表明,经过改进GAN数据增强后,平均精度均值mAP0.5最高提升了0.118,对单类缺陷的检测准确率最高提升了0.138。 展开更多
关键词 生成对抗网络 工业图像生成 预训练自编码器 缺陷检测
在线阅读 下载PDF
基于WGAN-GP的高风速区概率风谱建模 被引量:2
8
作者 刘芸 王浩 林禹轩 《东南大学学报(自然科学版)》 北大核心 2025年第2期364-369,共6页
针对实测高风速样本匮乏、难以准确捕获强/台风概率信息的问题,提出了基于带有梯度惩罚的Wasserstein距离生成对抗网络(WGAN⁃GP)的高风速区概率风谱建模方法。以江阴长江大桥2019—2020年的高风速实测数据为基础,将平均风速与风谱参数... 针对实测高风速样本匮乏、难以准确捕获强/台风概率信息的问题,提出了基于带有梯度惩罚的Wasserstein距离生成对抗网络(WGAN⁃GP)的高风速区概率风谱建模方法。以江阴长江大桥2019—2020年的高风速实测数据为基础,将平均风速与风谱参数同时作为WGAN⁃GP的输入变量,生成符合实测数据分布规律的高质量新样本,扩充了高风速样本数据集,并建立了高风速区概率风谱模型。结果表明,高风速区间的谱参数服从对数正态分布,其中标准差σ_(u)及无量纲参数A_(u)和B_(u)的均值分布参数与平均风速线性正相关,Au和Bu的标准差分布参数与平均风速线性正相关,σ_(u)的标准差分布参数与平均风速线性负相关。 展开更多
关键词 概率风谱 生成对抗网络(gan) 强/台风 实测 大跨度桥梁
在线阅读 下载PDF
Generative Adversarial Networks:Introduction and Outlook 被引量:58
9
作者 Kunfeng Wang Chao Gou +3 位作者 Yanjie Duan Yilun Lin Xinhu Zheng Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期588-598,共11页
Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adver... Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence. 展开更多
关键词 ACP approach adversarial learning generative adversarial networks(gans) generative models parallel intelligence zero-sum game
在线阅读 下载PDF
Generative Adversarial Network Based Heuristics for Sampling-Based Path Planning 被引量:12
10
作者 Tianyi Zhang Jiankun Wang Max Q.-H.Meng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期64-74,共11页
Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the conf... Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set. 展开更多
关键词 generative adversarial network(gan) optimal path planning robot path planning sampling-based path planning
在线阅读 下载PDF
基于双编码器双解码器GAN的低剂量CT降噪模型
11
作者 上官宏 任慧莹 +3 位作者 张雄 韩兴隆 桂志国 王燕玲 《计算机应用》 北大核心 2025年第2期624-632,共9页
近年来,生成对抗网络(GAN)用于低剂量计算机断层成像(LDCT)图像降噪已经表现出显著的性能优势,成为该领域的研究热点。然而,GAN的生成器对LDCT图像中噪声和伪影分布的感知能力不足,导致网络的降噪性能受限。因此,提出一种基于双编码器... 近年来,生成对抗网络(GAN)用于低剂量计算机断层成像(LDCT)图像降噪已经表现出显著的性能优势,成为该领域的研究热点。然而,GAN的生成器对LDCT图像中噪声和伪影分布的感知能力不足,导致网络的降噪性能受限。因此,提出一种基于双编码器双解码器生成对抗网络(DualED-GAN)的低剂量CT降噪模型。首先,提出由一对编解码器构成伪影像素级特征提取通道,用于估计LDCT中的伪影噪声;其次,提出由另外一对编解码器构成伪影掩码信息提取通道,用于估计伪影的强度和位置信息;最后,采用伪影图像质量标签图辅助估计伪影的掩码信息,可以为伪影像素级特征提取通道提供补充特征,进而提高GAN降噪网络对伪影噪声分布强度的敏感性。实验结果表明,在mayo测试集上与次优模型DESD-GAN(Dual-Encoder-Single-Decoder based Generative Adversarial Network)相比,所提模型的平均峰值信噪比(PSNR)提高了0.3387 dB,平均结构相似性度(SSIM)提高了0.0028。可见,所提模型在伪影抑制、结构保留与模型鲁棒性方面均有更好的表现。 展开更多
关键词 低剂量计算机断层成像 生成对抗网络 编码器 解码器 降噪
在线阅读 下载PDF
Two Generative Design Methods of Hospital Operating Department Layouts Based on Healthcare Systematic Layout Planning and Generative Adversarial Network 被引量:3
12
作者 ZHAO Chaowang YANG Jian +1 位作者 XIONG Wuyue LI Jiatong 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第1期103-115,共13页
With the increasing demands of health care,the design of hospital buildings has become increasingly demanding and complicated.However,the traditional layout design method for hospital is labor intensive,time consuming... With the increasing demands of health care,the design of hospital buildings has become increasingly demanding and complicated.However,the traditional layout design method for hospital is labor intensive,time consuming and prone to errors.With the development of artificial intelligence(AI),the intelligent design method has become possible and is considered to be suitable for the layout design of hospital buildings.Two intelli-gent design processes based on healthcare systematic layout planning(HSLP)and generative adversarial network(GAN)are proposed in this paper,which aim to solve the generation problem of the plane functional layout of the operating departments(ODs)of general hospitals.The first design method that is more like a mathemati-cal model with traditional optimization algorithm concerns the following two steps:developing the HSLP model based on the conventional systematic layout planning(SLP)theory,identifying the relationship and flows amongst various departments/units,and arriving at the preliminary plane layout design;establishing mathematical model to optimize the building layout by using the genetic algorithm(GA)to obtain the optimized scheme.The specific process of the second intelligent design based on more than 100 sets of collected OD drawings includes:labelling the corresponding functional layouts of each OD plan;building image-to-image translation with conditional ad-versarial network(pix2pix)for training OD plane layouts,which is one of the most representative GAN models.Finally,the functions and features of the results generated by the two methods are analyzed and compared from an architectural and algorithmic perspective.Comparison of the two design methods shows that the HSLP and GAN models can autonomously generate new OD plane functional layouts.The HSLP layouts have clear functional area adjacencies and optimization goals,but the layouts are relatively rigid and not specific enough.The GAN outputs are the most innovative layouts with strong applicability,but the dataset has strict constraints.The goal of this paper is to help release the heavy load of architects in the early design stage and present the effectiveness of these intelligent design methods in the field of medical architecture. 展开更多
关键词 healthcare systematic layout planning(HSLP) generative adversarial network(gan) genetic algo-rithm(GA) plane layout design HOSPITAL
原文传递
General image classification method based on semi-supervised generative adversarial networks 被引量:2
13
作者 Su Lei Xu Xiangyi +1 位作者 Lu Qiyu Zhang Wancai 《High Technology Letters》 EI CAS 2019年第1期35-41,共7页
Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis... Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated with generative adversarial network on image classification tasks to improve the image classification accuracy. Two applications of GANs are mainly focused on: semi-supervised learning and generation of images which can be as real as possible. The whole process is divided into two sections. First, only a small part of the dataset is utilized as labeled training data. And then a huge amount of samples generated from the generator is added into the training samples to improve the generalization of the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is made which may contain potential information. Thus, the classification accuracy of the discriminator can be improved. Experimental results demonstrate the improvement of the classification accuracy of discriminator among different datasets, such as MNIST, CIFAR-10. 展开更多
关键词 generative adversarial network(gan) SEMI-SUPERVISED image classification
在线阅读 下载PDF
Ballistic response of armour plates using Generative Adversarial Networks 被引量:1
14
作者 S.Thompson F.Teixeira-Dias +1 位作者 M.Paulino A.Hamilton 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1513-1522,共10页
It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-ba... It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process. 展开更多
关键词 Machine learning generative adversarial networks gan Terminal ballistics Armour systems
在线阅读 下载PDF
基于可逆神经网络的黑盒GAN生成人脸反取证方法
15
作者 陈北京 冯逸凡 李玉茹 《信息安全研究》 北大核心 2025年第5期394-401,共8页
生成对抗网络(generative adversarial network, GAN)生成的人脸取证模型用于区分真实人脸和GAN生成人脸.但由于其易受对抗攻击影响,GAN生成人脸反取证技术应运而生.然而,现有反取证方法依赖白盒代理模型,迁移性不足.因此,提出了一种基... 生成对抗网络(generative adversarial network, GAN)生成的人脸取证模型用于区分真实人脸和GAN生成人脸.但由于其易受对抗攻击影响,GAN生成人脸反取证技术应运而生.然而,现有反取证方法依赖白盒代理模型,迁移性不足.因此,提出了一种基于可逆神经网络(invertible neural network, INN)的黑盒GAN生成人脸反取证方法.该方法通过INN将真实人脸特征嵌入GAN生成人脸中,使生成的反取证人脸能够误导取证模型.同时,在训练中引入特征损失,通过最大化反取证人脸特征与真实人脸特征间的余弦相似度,进一步提升反取证性能.实验结果表明,在不依赖任何白盒模型的场景下,该方法对8种取证模型都有良好的攻击性能,优于对比的7种方法,且可以生成高视觉质量的反取证人脸. 展开更多
关键词 对抗攻击 可逆神经网络 gan生成人脸 反取证 黑盒
在线阅读 下载PDF
Evolution and Effectiveness of Loss Functions in Generative Adversarial Networks 被引量:1
16
作者 Ali Syed Saqlain Fang Fang +2 位作者 Tanvir Ahmad Liyun Wang Zain-ul Abidin 《China Communications》 SCIE CSCD 2021年第10期45-76,共32页
Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss... Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss functions are introduced to measure the degree of similarity between the samples generated by the generator and the real data samples,and the effectiveness of the loss functions in improving the generating ability of GANs.In this paper,we present a detailed survey for the loss functions used in GANs,and provide a critical analysis on the pros and cons of these loss functions.First,the basic theory of GANs along with the training mechanism are introduced.Then,the most commonly used loss functions in GANs are introduced and analyzed.Third,the experimental analyses and comparison of these loss functions are presented in different GAN architectures.Finally,several suggestions on choosing suitable loss functions for image synthesis tasks are given. 展开更多
关键词 loss functions deep learning machine learning unsupervised learning generative adversarial networks(gans) image synthesis
在线阅读 下载PDF
基于GAN的无数据黑盒对抗攻击方法
17
作者 赵恩浩 凌捷 《计算机工程与应用》 北大核心 2025年第7期204-212,共9页
对抗样本能够使深度神经网络以高置信度输出错误的结果。在黑盒攻击中,现有的替代模型训练方法需要目标模型全部或部分训练数据才能取得较好的攻击效果,但实际应用中目标模型的训练数据难以获取。因此,提出一种基于GAN的无数据黑盒对抗... 对抗样本能够使深度神经网络以高置信度输出错误的结果。在黑盒攻击中,现有的替代模型训练方法需要目标模型全部或部分训练数据才能取得较好的攻击效果,但实际应用中目标模型的训练数据难以获取。因此,提出一种基于GAN的无数据黑盒对抗攻击方法。无需目标模型的训练数据,使用混合标签信息的噪声生成替代模型所需的训练样本,通过目标模型的标记信息以及多样化损失函数使训练样本分布均匀且包含更多特征信息,进而使替代模型高效学习目标模型的分类功能。对比DaST和MAZE,该方法在降低35%~60%的对抗扰动和查询次数的同时对CIFAR-100、CIFAR-10、SVHN、FMNIST、MNIST五个数据集的FGSM、BIM、PGD三种攻击的成功率平均提高6~10个百分点,并且在实际应用中的黑盒模型场景Microsoft Azure取得78%以上的攻击成功率。 展开更多
关键词 黑盒对抗攻击 生成对抗网络 替代训练 迁移攻击 深度神经网络
在线阅读 下载PDF
基于多判别器GAN的多终端干扰建模方法
18
作者 邓卢军 段红光 刘何鑫 《重庆邮电大学学报(自然科学版)》 北大核心 2025年第4期500-506,共7页
为完成多终端场景下复杂干扰建模,同时用基于推土机距离的生成对抗网络(generative adversarial network,GAN)解决多类数据生成问题,采用改进的多判别器GAN方法,分别拟合每类干扰数据分布距离来提高模型生成性能。搭建了通信链路和生成... 为完成多终端场景下复杂干扰建模,同时用基于推土机距离的生成对抗网络(generative adversarial network,GAN)解决多类数据生成问题,采用改进的多判别器GAN方法,分别拟合每类干扰数据分布距离来提高模型生成性能。搭建了通信链路和生成干扰训练数据;分析了网络的损失函数以及搭建和训练生成对抗网络;通过仿真链路验证了生成数据性能。仿真结果表明,该模型的数据频域拟合能力优于单判别器,该模型生成的噪声数据在数据分布、平均干扰误比特率方面与实测数据相符合,生成数据与实际数据集的比特错误率相差0.1~2 dB。 展开更多
关键词 多终端 生成对抗网络(gan) 误比特率 干扰建模
在线阅读 下载PDF
融合过-欠采样与GAN的网络入侵检测方法
19
作者 王秀玉 吴晓鸰 冯永晋 《小型微型计算机系统》 北大核心 2025年第2期449-455,共7页
随着互联网技术的发展,网络数据流量每秒激增,伴随而来更多的安全问题.针对网络入侵数据集类不平衡和数据维度高导致的分类不准确问题,本文提出一种融合过-欠采样和GAN的网络入侵检测方法.采用随机欠采样减少多数类样本数量,以避免欠拟... 随着互联网技术的发展,网络数据流量每秒激增,伴随而来更多的安全问题.针对网络入侵数据集类不平衡和数据维度高导致的分类不准确问题,本文提出一种融合过-欠采样和GAN的网络入侵检测方法.采用随机欠采样减少多数类样本数量,以避免欠拟合问题.同时,通过合成少数类过采样技术合成少数类样本,以降低类不平衡所带来的影响.此外,结合GAN使合成样本更接近真实样本,以解决SMOTE中新合成样本缺乏合理性的问题.最后,集成自编码器,通过降低数据集的维度来减少内存占用,并加速分类模型的训练.在CICIDS2017数据集上进行对比实验,结果表明本文提出的融合过-欠采样和GAN的网络入侵检测方法性能优于其他方法. 展开更多
关键词 网络入侵检测 生成对抗网络 SMOTE 自编码器
在线阅读 下载PDF
Single Image Dehazing: An Analysis on Generative Adversarial Network 被引量:1
20
作者 Amina Khatun Mohammad Reduanul Haque +1 位作者 Rabeya Basri Mohammad Shorif Uddin 《Journal of Computer and Communications》 2020年第4期127-137,共11页
Haze is a very common phenomenon that degrades or reduces visibility. It causes various problems where high-quality images are required such as traffic and security monitoring. So haze removal from scenes is an immedi... Haze is a very common phenomenon that degrades or reduces visibility. It causes various problems where high-quality images are required such as traffic and security monitoring. So haze removal from scenes is an immediate demand for clear vision. Recently, in addition to the conventional dehazing mechanisms, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired “in the wild” and how we could gauge the progress in the field. To bridge this gap, this presents a comprehensive study on three single image dehazing state-of-the-art GAN models, such as AOD-Net, cGAN, and DHSGAN. We have experimented using benchmark dataset consisting of both synthetic and real-world hazy images. The obtained results are evaluated both quantitatively and qualitatively. Among these techniques, the DHSGAN gives the best performance. 展开更多
关键词 Dehazing DEEP Leaning Convulutional NEURAL network (CNN) generative adversarial networks (gan)
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部