Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex...Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of...Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.展开更多
Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been s...Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.展开更多
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ...Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design.展开更多
Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involv...Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involving a large number of variables,researchers have exploited deep learning to expedite the optimization of material properties,such as the heat dissipation of solid isotropic materials with penalization(SIMP).However,because the approach is limited by discrete datasets and labeled training forms,ensuring the continuous adaptation of the condition domain and maintaining the stability of the design structure remain major challenges in the current intelligent design methodology for thermally conductive structures.In this study,we propose an innovative intelligent design fram-ework integrating Conditional Deep Convolutional Generative Adversarial Networks(CDCGAN)with SIMP,capable of creating topology structures that meet prescribed thermal conduction performance.This proposed design strategy significantly reduces the computational time required to solve symmetric and random heat sink problems compared with existing design approaches and is approximately 98%faster than standard SIMP methods and 55.5%faster than conventional deep-learning-based methods.In addition,we benchmarked the design performance of the proposed framework against theoretical structural designs via experimental measurements.We observed a 50.1%reduction in the average temperature and a 28.2%reduction in the highest temperature in our designed topology compared with those theoretical structure designs.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act ...Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors.展开更多
Network architectures assisted by Generative Artificial Intelligence(GAI)are envisioned as foundational elements of sixth-generation(6G)communication system.To deliver ubiquitous intelligent services and meet diverse ...Network architectures assisted by Generative Artificial Intelligence(GAI)are envisioned as foundational elements of sixth-generation(6G)communication system.To deliver ubiquitous intelligent services and meet diverse service requirements,6G network architecture should offer personalized services to various mobile devices.Federated learning(FL)with personalized local training,as a privacypreserving machine learning(ML)approach,can be applied to address these challenges.In this paper,we propose a meta-learning-based personalized FL(PFL)method that improves both communication and computation efficiency by utilizing over-the-air computations.Its“pretraining-and-fine-tuning”principle makes it particularly suitable for enabling edge nodes to access personalized GAI services while preserving local privacy.Experiment results demonstrate the outperformance and efficacy of the proposed algorithm,and notably indicate enhanced communication efficiency without compromising accuracy.展开更多
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by...The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.展开更多
Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potentia...Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potential of fractals in traditional textile design,a fractal-based generative framework was proposed for efficiently creating drawnwork patterns suitable for practical handicraft production.The research was initiated with an analysis of the structural composition of center,skeleton,and filler motifs extracted from a pattern sample library.Based on this hierarchical classification,the box-counting method was employed to calculate their respective fractal dimensions.Building on fractal art theory,generative algorithms,and studies on the application of Ultra Fractal,a Chaoshan drawnwork fractal design model was established.Using this model,51 drawnwork fractal patterns and 153 handkerchief patterns were generated.These patterns were subsequently applied in real-world production to validate the feasibility and value of fractal techniques in textile design.展开更多
This study systematically reviews the applications of generative artificial intelligence(GAI)in breast cancer research,focusing on its role in diagnosis and therapeutic development.While GAI has gained significant att...This study systematically reviews the applications of generative artificial intelligence(GAI)in breast cancer research,focusing on its role in diagnosis and therapeutic development.While GAI has gained significant attention across various domains,its utility in breast cancer research has yet to be comprehensively reviewed.This study aims to fill that gap by synthesizing existing research into a unified document.A comprehensive search was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,resulting in the retrieval of 3827 articles,of which 31 were deemed eligible for analysis.The included studies were categorized based on key criteria,such as application types,geographical distribution,contributing organizations,leading journals,publishers,and temporal trends.Keyword co-occurrence mapping and subject profiling further highlighted the major research themes in this field.The findings reveal that GAI models have been applied to improve breast cancer diagnosis,treatment planning,and outcome predictions.Geographical and network analyses showed that most contributions come from a few leading institutions,with limited global collaboration.The review also identifies key challenges in implementing GAI in clinical practice,such as data availability,ethical concerns,and model validation.Despite these challenges,the study highlights GAI’s potential to enhance breast cancer research,particularly in generating synthetic data,improving diagnostic accuracy,and personalizing treatment approaches.This review serves as a valuable resource for researchers and stakeholders,providing insights into current research trends,major contributors,and collaborative networks in GAI-based breast cancer studies.By offering a holistic overview,it aims to support future research directions and encourage broader adoption of GAI technologies in healthcare.Additionally,the study emphasizes the importance of overcoming implementation barriers to fully realizeGAI’s potential in transforming breast cancer management.展开更多
Catalysis has made great contributions to the productivity of human society. Therefore, the pursuit of new catalysts and research on catalytic processes has never stopped. Continuous and in-depth catalysis research si...Catalysis has made great contributions to the productivity of human society. Therefore, the pursuit of new catalysts and research on catalytic processes has never stopped. Continuous and in-depth catalysis research significantly increases the complexity of dynamic systems and multivariate optimization, thus posing higher challenges to research methodologies. Recently, the significant advancement of generative artificial intelligence (AI) provides new opportunities for catalysis research. Different from traditional discriminative AI, this state-of-the-art technique generates new samples based on existing data and accumulated knowledge, which endows it with attractive potential for catalysis research — a field featuring a vast exploration space, diverse data types and complex mapping relationships. Generative AI can greatly enhance both the efficiency and innovation capacity of catalysis research, subsequently fostering new scientific paradigms. This perspective covers the basic introduction, unique advantages of this powerful tool, and presents cases of generative AI implemented in various catalysis researches, including catalyst design and optimization, characterization technique enhancement and guidance for new research paradigms. These examples highlight its exceptional efficiency and general applicability. We further discuss the practical challenges in implementation and future development perspectives, ultimately aiming to promote better applications of generative AI in catalysis.展开更多
Objectives Nurses’clinical research activities have contributed to optimizing the care process and improving patient outcomes,and generative artificial intelligence(GAI)may help clinical nurses strengthen their resea...Objectives Nurses’clinical research activities have contributed to optimizing the care process and improving patient outcomes,and generative artificial intelligence(GAI)may help clinical nurses strengthen their research skills.To support research,this study aimed to explore the Chinese nurses’perceptions and experiences of GAI training.Methods This study used a descriptive qualitative design.The China Nurses Network conducted a three-day training session on“GAI for Nursing Research”theme,we selected 23 nurses by a convenience sampling method among participating in the training.The researchers conducted three focus group interviews at the end of each day.All focus groups were interviewed face-to-face to facilitate interaction,data collection,and observation.The data were analyzed using conventional content analysis and coded manually.Results The results showed that nurses’use of GAI to support scientific research was dynamic and characterized by evolving perceptions and practices.Four themes and 11 sub-themes emerged from the analysis:1)utilization efficacy:cope with research ability,affected by many factors;2)booster research:growth and challenges go hand in hand;3)role reversal:from GAI-dominated to nurse-dominated;4)beautiful dream:more features on research,more assistants on clinical care.Conclusions The effectiveness of GAI in supporting clinical nurses in conducting research is mainly limited by differences in personal research literacy,lack of ethical regulation,and information accuracy.In the future,it is necessary to improve nurses’relevant skills through specialized training and promote the standardization of technical regulations to ensure the appropriate application of GAI in nursing research.展开更多
In this study,we introduce a deep generative model,named Multi-Species Generative Adversarial Network(MS-GAN),which is developed to extract the low-dimensional manifold of three-dimensional multi-species surfaces.In t...In this study,we introduce a deep generative model,named Multi-Species Generative Adversarial Network(MS-GAN),which is developed to extract the low-dimensional manifold of three-dimensional multi-species surfaces.In the development of MS-GAN,we extend the freeform deformation by incorporating principal component analysis to increase the non-linear deformation ability while maintaining geometric smoothness.The implicit information of multiple baselines is embedded in the feature extraction layers,to enhance the diversity and parameterization of multi-species dataset.Furthermore,Wasserstein GAN with a gradient penalty is used to ensure the stability and convergence of the training networks.Two experiments,ruled surfaces and propeller blade surfaces,are performed to demonstrate the advantages and superiorities of MS-GAN.展开更多
The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G en...The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G envisions a hyper-connected environment that supports ubiquitous intelligence through ultra-low latency,high throughput,massive device connectivity,and integrated sensing and communication.On the other hand,generative AI,powered by large foundation models,has emerged as a powerful paradigm capable of creating.展开更多
Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive...Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive framework based on generative adversarial network(GAN)for characterizing pore structure properties of shale,which incorporates image augmentation,super-resolution reconstruction,and multi-mineral auto-segmentation.Using real 2D and 3D shale images,the framework was assessed through correlation function,entropy,porosity,pore size distribution,and permeability.The application results show that this framework enables the enhancement of 3D low-resolution digital cores by a scale factor of 8,without paired shale images,effectively reconstructing the unresolved fine-scale pores under a low resolution,rather than merely denoising,deblurring,and edge clarification.The trained GAN-based segmentation model effectively improves manual multi-mineral segmentation results,resulting in a strong resemblance to real samples in terms of pore size distribution and permeability.This framework significantly improves the characterization of complex shale microstructures and can be expanded to other heterogeneous porous media,such as carbonate,coal,and tight sandstone reservoirs.展开更多
This study aims to identify the key factors influencing the adoption of generative AI(GenAI)by Vietnamese banks and highlight the challenges and opportunities in digital transformation.It extends the technology-organi...This study aims to identify the key factors influencing the adoption of generative AI(GenAI)by Vietnamese banks and highlight the challenges and opportunities in digital transformation.It extends the technology-organization-environment(TOE)framework to incorporate GenAI-specific factors in the Vietnamese banking sector,characterized by rapid digitization and stringent regulations.A survey yielded 236 valid responses.The data were analyzed via partial least squares structural equation modeling(PLSSEM).The key factors identified include organizational readiness(OR),compatibility(CPT),competitive pressure(CP),complexity(CPL),relative advantage(RA),firm size(FS),and government support(GS).OR emerged as the most influential factor because of a robust IT infrastructure and skilled personnel.CPT and CP were also significant,driving banks to adopt GenAI for a competitive edge.However,CPL presents challenges,requiring simpler AI solutions and clear risk mitigation policies.This study enhances the understanding of GenAI adoption within the Vietnamese banking sector,emphasizing the importance of tailored strategies for different bank sizes and the critical role of technology readiness for effective integration.The findings provide actionable insights into banks navigating their digital transformation journeys.展开更多
The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper...The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper proposes an architecture that integrates speech prompts as input to image-generation Generative Adversarial Networks(GANs)model,leveraging Speech-to-Text translation along with the CLIP+VQGAN model.The proposed method involves translating speech prompts into text,which is then used by the Contrastive Language-Image Pretraining(CLIP)+Vector Quantized Generative Adversarial Network(VQGAN)model to generate images.This paper outlines the steps required to implement such a model and describes in detail the methods used for evaluating the model.The GAN model successfully generates artwork from descriptions using speech and text prompts.Experimental outcomes of synthesized images demonstrate that the proposed methodology can produce beautiful abstract visuals containing elements from the input prompts.The model achieved a Frechet Inception Distance(FID)score of 28.75,showcasing its capability to produce high-quality and diverse images.The proposed model can find numerous applications in educational,artistic,and design spaces due to its ability to generate images using speech and the distinct abstract artistry of the output images.This capability is demonstrated by giving the model out-of-the-box prompts to generate never-before-seen images with plausible realistic qualities.展开更多
The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films...The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality.展开更多
The transition of generative AI from an analytical to a creative tool is profoundly reshaping global education.This study employs CiteSpace for a scientometric analysis of relevant literature,identifying key research ...The transition of generative AI from an analytical to a creative tool is profoundly reshaping global education.This study employs CiteSpace for a scientometric analysis of relevant literature,identifying key research domains-“higher education,”“human-AI collaboration,”and“educational innovation”-and tracing their evolution.A comparative examination of approaches in the UK,US,and Australia highlights international variations in governance,assessment,and pedagogical integration.The analysis details GenAI’s transformative impact on key educational processes(teaching,learning,assessment,tutoring)via its core capabilities,while also addressing associated risks like data privacy,ethical dilemmas,and over-reliance.Concluding with a China-specific perspective,the paper proposes a forward-looking framework emphasizing human-centric principles,robust accountability,sustainable data ecosystems,and synergistic development,offering insights for intelligent education development worldwide.展开更多
基金This study was supported by:Inner Mongolia Academy of Forestry Sciences Open Research Project(Grant No.KF2024MS03)The Project to Improve the Scientific Research Capacity of the Inner Mongolia Academy of Forestry Sciences(Grant No.2024NLTS04)The Innovation and Entrepreneurship Training Program for Undergraduates of Beijing Forestry University(Grant No.X202410022268).
文摘Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金supported by the Chung-Ang University Research Grants in 2023.Alsothe work is supported by the ELLIIT Excellence Center at Linköping–Lund in Information Technology in Sweden.
文摘Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.
基金National Natural Science Foundation of China(Nos.4210144242394063).
文摘Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.
基金supported by the Yonsei University graduate school Department of Integrative Biotechnology.
文摘Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design.
基金Supported by National Natural Science Foundation of China(Grant Nos.52222508 and 52335011)。
文摘Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involving a large number of variables,researchers have exploited deep learning to expedite the optimization of material properties,such as the heat dissipation of solid isotropic materials with penalization(SIMP).However,because the approach is limited by discrete datasets and labeled training forms,ensuring the continuous adaptation of the condition domain and maintaining the stability of the design structure remain major challenges in the current intelligent design methodology for thermally conductive structures.In this study,we propose an innovative intelligent design fram-ework integrating Conditional Deep Convolutional Generative Adversarial Networks(CDCGAN)with SIMP,capable of creating topology structures that meet prescribed thermal conduction performance.This proposed design strategy significantly reduces the computational time required to solve symmetric and random heat sink problems compared with existing design approaches and is approximately 98%faster than standard SIMP methods and 55.5%faster than conventional deep-learning-based methods.In addition,we benchmarked the design performance of the proposed framework against theoretical structural designs via experimental measurements.We observed a 50.1%reduction in the average temperature and a 28.2%reduction in the highest temperature in our designed topology compared with those theoretical structure designs.
基金supported by Interdisciplinary Innova-tion Project of“Bioarchaeology Laboratory”of Jilin University,China,and“MedicineþX”Interdisciplinary Innovation Team of Norman Bethune Health Science Center of Jilin University,China(Grant No.:2022JBGS05).
文摘Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors.
基金supported in part by the National Key R&D Program of China under Grant 2024YFE0200700in part by the National Natural Science Foundation of China under Grant 62201504.
文摘Network architectures assisted by Generative Artificial Intelligence(GAI)are envisioned as foundational elements of sixth-generation(6G)communication system.To deliver ubiquitous intelligent services and meet diverse service requirements,6G network architecture should offer personalized services to various mobile devices.Federated learning(FL)with personalized local training,as a privacypreserving machine learning(ML)approach,can be applied to address these challenges.In this paper,we propose a meta-learning-based personalized FL(PFL)method that improves both communication and computation efficiency by utilizing over-the-air computations.Its“pretraining-and-fine-tuning”principle makes it particularly suitable for enabling edge nodes to access personalized GAI services while preserving local privacy.Experiment results demonstrate the outperformance and efficacy of the proposed algorithm,and notably indicate enhanced communication efficiency without compromising accuracy.
基金described in this paper has been developed with in the project PRESECREL(PID2021-124502OB-C43)。
文摘The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.
文摘Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potential of fractals in traditional textile design,a fractal-based generative framework was proposed for efficiently creating drawnwork patterns suitable for practical handicraft production.The research was initiated with an analysis of the structural composition of center,skeleton,and filler motifs extracted from a pattern sample library.Based on this hierarchical classification,the box-counting method was employed to calculate their respective fractal dimensions.Building on fractal art theory,generative algorithms,and studies on the application of Ultra Fractal,a Chaoshan drawnwork fractal design model was established.Using this model,51 drawnwork fractal patterns and 153 handkerchief patterns were generated.These patterns were subsequently applied in real-world production to validate the feasibility and value of fractal techniques in textile design.
基金financial support from the Fundamental Research Grant Scheme(FRGS)under grant number:FRGS/1/2024/ICT02/TARUMT/02/1from the Ministry of Higher Education Malaysiafunded in part by the internal grant from the Tunku Abdul Rahman University of Management and Technology(TAR UMT)with grant number:UC/I/G2024-00129.
文摘This study systematically reviews the applications of generative artificial intelligence(GAI)in breast cancer research,focusing on its role in diagnosis and therapeutic development.While GAI has gained significant attention across various domains,its utility in breast cancer research has yet to be comprehensively reviewed.This study aims to fill that gap by synthesizing existing research into a unified document.A comprehensive search was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,resulting in the retrieval of 3827 articles,of which 31 were deemed eligible for analysis.The included studies were categorized based on key criteria,such as application types,geographical distribution,contributing organizations,leading journals,publishers,and temporal trends.Keyword co-occurrence mapping and subject profiling further highlighted the major research themes in this field.The findings reveal that GAI models have been applied to improve breast cancer diagnosis,treatment planning,and outcome predictions.Geographical and network analyses showed that most contributions come from a few leading institutions,with limited global collaboration.The review also identifies key challenges in implementing GAI in clinical practice,such as data availability,ethical concerns,and model validation.Despite these challenges,the study highlights GAI’s potential to enhance breast cancer research,particularly in generating synthetic data,improving diagnostic accuracy,and personalizing treatment approaches.This review serves as a valuable resource for researchers and stakeholders,providing insights into current research trends,major contributors,and collaborative networks in GAI-based breast cancer studies.By offering a holistic overview,it aims to support future research directions and encourage broader adoption of GAI technologies in healthcare.Additionally,the study emphasizes the importance of overcoming implementation barriers to fully realizeGAI’s potential in transforming breast cancer management.
基金supported by the National Natural Science Foundation of China(T2441001)the National Key Research&Development Program of China(2023YFB4104503).
文摘Catalysis has made great contributions to the productivity of human society. Therefore, the pursuit of new catalysts and research on catalytic processes has never stopped. Continuous and in-depth catalysis research significantly increases the complexity of dynamic systems and multivariate optimization, thus posing higher challenges to research methodologies. Recently, the significant advancement of generative artificial intelligence (AI) provides new opportunities for catalysis research. Different from traditional discriminative AI, this state-of-the-art technique generates new samples based on existing data and accumulated knowledge, which endows it with attractive potential for catalysis research — a field featuring a vast exploration space, diverse data types and complex mapping relationships. Generative AI can greatly enhance both the efficiency and innovation capacity of catalysis research, subsequently fostering new scientific paradigms. This perspective covers the basic introduction, unique advantages of this powerful tool, and presents cases of generative AI implemented in various catalysis researches, including catalyst design and optimization, characterization technique enhancement and guidance for new research paradigms. These examples highlight its exceptional efficiency and general applicability. We further discuss the practical challenges in implementation and future development perspectives, ultimately aiming to promote better applications of generative AI in catalysis.
基金supported by a grant from the National Natural Science Foundation of China(No.72174130)。
文摘Objectives Nurses’clinical research activities have contributed to optimizing the care process and improving patient outcomes,and generative artificial intelligence(GAI)may help clinical nurses strengthen their research skills.To support research,this study aimed to explore the Chinese nurses’perceptions and experiences of GAI training.Methods This study used a descriptive qualitative design.The China Nurses Network conducted a three-day training session on“GAI for Nursing Research”theme,we selected 23 nurses by a convenience sampling method among participating in the training.The researchers conducted three focus group interviews at the end of each day.All focus groups were interviewed face-to-face to facilitate interaction,data collection,and observation.The data were analyzed using conventional content analysis and coded manually.Results The results showed that nurses’use of GAI to support scientific research was dynamic and characterized by evolving perceptions and practices.Four themes and 11 sub-themes emerged from the analysis:1)utilization efficacy:cope with research ability,affected by many factors;2)booster research:growth and challenges go hand in hand;3)role reversal:from GAI-dominated to nurse-dominated;4)beautiful dream:more features on research,more assistants on clinical care.Conclusions The effectiveness of GAI in supporting clinical nurses in conducting research is mainly limited by differences in personal research literacy,lack of ethical regulation,and information accuracy.In the future,it is necessary to improve nurses’relevant skills through specialized training and promote the standardization of technical regulations to ensure the appropriate application of GAI in nursing research.
基金support of the National Natural Science Foundation of China(No.12372221)is acknowledged.
文摘In this study,we introduce a deep generative model,named Multi-Species Generative Adversarial Network(MS-GAN),which is developed to extract the low-dimensional manifold of three-dimensional multi-species surfaces.In the development of MS-GAN,we extend the freeform deformation by incorporating principal component analysis to increase the non-linear deformation ability while maintaining geometric smoothness.The implicit information of multiple baselines is embedded in the feature extraction layers,to enhance the diversity and parameterization of multi-species dataset.Furthermore,Wasserstein GAN with a gradient penalty is used to ensure the stability and convergence of the training networks.Two experiments,ruled surfaces and propeller blade surfaces,are performed to demonstrate the advantages and superiorities of MS-GAN.
文摘The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G envisions a hyper-connected environment that supports ubiquitous intelligence through ultra-low latency,high throughput,massive device connectivity,and integrated sensing and communication.On the other hand,generative AI,powered by large foundation models,has emerged as a powerful paradigm capable of creating.
基金Supported by the National Natural Science Foundation of China(U23A20595,52034010,52288101)National Key Research and Development Program of China(2022YFE0203400)+1 种基金Shandong Provincial Natural Science Foundation(ZR2024ZD17)Fundamental Research Funds for the Central Universities(23CX10004A).
文摘Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive framework based on generative adversarial network(GAN)for characterizing pore structure properties of shale,which incorporates image augmentation,super-resolution reconstruction,and multi-mineral auto-segmentation.Using real 2D and 3D shale images,the framework was assessed through correlation function,entropy,porosity,pore size distribution,and permeability.The application results show that this framework enables the enhancement of 3D low-resolution digital cores by a scale factor of 8,without paired shale images,effectively reconstructing the unresolved fine-scale pores under a low resolution,rather than merely denoising,deblurring,and edge clarification.The trained GAN-based segmentation model effectively improves manual multi-mineral segmentation results,resulting in a strong resemblance to real samples in terms of pore size distribution and permeability.This framework significantly improves the characterization of complex shale microstructures and can be expanded to other heterogeneous porous media,such as carbonate,coal,and tight sandstone reservoirs.
文摘This study aims to identify the key factors influencing the adoption of generative AI(GenAI)by Vietnamese banks and highlight the challenges and opportunities in digital transformation.It extends the technology-organization-environment(TOE)framework to incorporate GenAI-specific factors in the Vietnamese banking sector,characterized by rapid digitization and stringent regulations.A survey yielded 236 valid responses.The data were analyzed via partial least squares structural equation modeling(PLSSEM).The key factors identified include organizational readiness(OR),compatibility(CPT),competitive pressure(CP),complexity(CPL),relative advantage(RA),firm size(FS),and government support(GS).OR emerged as the most influential factor because of a robust IT infrastructure and skilled personnel.CPT and CP were also significant,driving banks to adopt GenAI for a competitive edge.However,CPL presents challenges,requiring simpler AI solutions and clear risk mitigation policies.This study enhances the understanding of GenAI adoption within the Vietnamese banking sector,emphasizing the importance of tailored strategies for different bank sizes and the critical role of technology readiness for effective integration.The findings provide actionable insights into banks navigating their digital transformation journeys.
基金funded by the Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),Faculty of Engineering and IT,University of Technology SydneyMoreover,supported by the Researchers Supporting Project,King Saud University,Riyadh,Saudi Arabia,under Ongoing Research Funding(ORF-2025-14).
文摘The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper proposes an architecture that integrates speech prompts as input to image-generation Generative Adversarial Networks(GANs)model,leveraging Speech-to-Text translation along with the CLIP+VQGAN model.The proposed method involves translating speech prompts into text,which is then used by the Contrastive Language-Image Pretraining(CLIP)+Vector Quantized Generative Adversarial Network(VQGAN)model to generate images.This paper outlines the steps required to implement such a model and describes in detail the methods used for evaluating the model.The GAN model successfully generates artwork from descriptions using speech and text prompts.Experimental outcomes of synthesized images demonstrate that the proposed methodology can produce beautiful abstract visuals containing elements from the input prompts.The model achieved a Frechet Inception Distance(FID)score of 28.75,showcasing its capability to produce high-quality and diverse images.The proposed model can find numerous applications in educational,artistic,and design spaces due to its ability to generate images using speech and the distinct abstract artistry of the output images.This capability is demonstrated by giving the model out-of-the-box prompts to generate never-before-seen images with plausible realistic qualities.
文摘The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality.
文摘The transition of generative AI from an analytical to a creative tool is profoundly reshaping global education.This study employs CiteSpace for a scientometric analysis of relevant literature,identifying key research domains-“higher education,”“human-AI collaboration,”and“educational innovation”-and tracing their evolution.A comparative examination of approaches in the UK,US,and Australia highlights international variations in governance,assessment,and pedagogical integration.The analysis details GenAI’s transformative impact on key educational processes(teaching,learning,assessment,tutoring)via its core capabilities,while also addressing associated risks like data privacy,ethical dilemmas,and over-reliance.Concluding with a China-specific perspective,the paper proposes a forward-looking framework emphasizing human-centric principles,robust accountability,sustainable data ecosystems,and synergistic development,offering insights for intelligent education development worldwide.