期刊文献+
共找到63,968篇文章
< 1 2 250 >
每页显示 20 50 100
Upshot of Chemical Species and Nonlinear Thermal Radiation on Oldroyd-B Nanofluid Flow Past a Bi-directional Stretched Surface with Heat Generation/Absorption in a Porous Media 被引量:1
1
作者 Dian-Chen Lu M.Ramzan +2 位作者 M.Bilal Jae Dong Chung Umer Farooq 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第7期71-80,共10页
A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by tem... A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by temperature dependent thermal conductivity, chemical reaction and convective heat and mass conditions. Novel characteristics of Brownian motion and thermophoresis are accompanied by magnetohydrodynamic and heat generation/absorption.Self-similar transformations are employed to convert the system of nonlinear partial differential equations to a system of ordinary differential equations with high nonlinearity and are solved by strong analytic technique named as Homotopy Analysis method(HAM). Effects of varied arising parameters on involved distributions are reflected through graphical illustrations. From this study, it is perceived that strong magnetic field hinders the fluid's motion and leads to rise in temperature that eventually lowers heat transfer rate from the surface. Further, decrease in heat transfer rate is also observed for enhanced values of thermal radiation parameter. To validate our results, a comparison with already published paper in limiting case is also given and results are found in excellent oncurrence; hence reliable results are being presented. 展开更多
关键词 nonlinear thermal radiation heat generation/absorption chemical reaction convective heat andmass conditions porous media
原文传递
Modeling Chemically Reactive Flow of Sutterby Nanofluid by a Rotating Disk in Presence of Heat Generation/Absorption 被引量:1
2
作者 T.Hayat Salman Ahmad +1 位作者 M.Ijaz Khan A.Alsaedi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第5期569-576,共8页
In this article we investigate the flow of Sutterby liquid due to rotating stretchable disk. Mass and heat transport are analyzed through Brownian diffusion and thermophoresis. Further the effects of magnetic field, c... In this article we investigate the flow of Sutterby liquid due to rotating stretchable disk. Mass and heat transport are analyzed through Brownian diffusion and thermophoresis. Further the effects of magnetic field, chemical reaction and heat source are also accounted. We employ transformation procedure to obtain a system of nonlinear ODE's. This system is numerically solved by Built-in-Shooting method. Impacts of different involved parameter on velocity, temperature and concentration are described. Velocity, concentration and temperature gradients are numerically computed. Obtained results show that velocity is reduced through material parameter. Temperature and concentration are enhanced with thermophoresis parameter. 展开更多
关键词 sutterby nanoliquid magnetic field chemical reaction rotating stretchable disk heat generation
原文传递
Unravelling Temperature Profile through Bifacial PV Modules via Finite Difference Method:Effects of Heat Internal Generation Due to Spectral Absorption
3
作者 Khadija Ibaararen Mhammed Zaimi +1 位作者 Khadija El Ainaoui El Mahdi Assaid 《Energy Engineering》 2025年第9期3487-3505,共19页
This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal h... This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies. 展开更多
关键词 Bifacial photovoltaic(bPV) solarmodule heat transfer optical absorption temperature profile ALBEDO finite difference method
在线阅读 下载PDF
First and Second Law Analysis of a LiBr-Water Absorption Cycle with Recovering Condensation Heat for Generation
4
作者 J.L.Rodríguez-Muñoz J.S.Pacheco-Cedeño +2 位作者 J.F.Ituna-Yudonago J.J.Ramírez-Minguela I.J.González-Hernández 《Frontiers in Heat and Mass Transfer》 EI 2024年第6期1719-1741,共23页
In conventional absorption refrigeration systems(ARS),the heat from the condenser is usually rejected by the environment in place to be used in the system,so recuperating this is a good alternative to enhance the sys... In conventional absorption refrigeration systems(ARS),the heat from the condenser is usually rejected by the environment in place to be used in the system,so recuperating this is a good alternative to enhance the system’s performance.For instance,in this paper,an alternative ARS in which LiBr/Water is used as a refrigerant mixture,where part of condensing heat is recovered via the solution heat recovery generator absorption cycle(HR-ARS)was energy and exergy evaluated.The influence of generator,condenser and evaporator temperatures,as well as the efficiency of the solution heat exchanger on the coefficient of performance,exergy performance and exergy destroyed of the HR-ARS system,were analyzed and compared with the traditional ARS system at the same working conditions.The results showed an increase between 5.8%–6.3%on the COP and 3.7%–9.5%in the exergy efficiency when condenser/absorber temperature was reduced from 40℃ to 30℃.However,when the evaporation temperature rose from 5℃ to 15℃,the COP(coefficient of performance)increased by around 8%,although this could be increased by 2.3%–6.3%if the generator temperature decreases from 100℃ to 80℃.Moreover,the COP and exergetic performance for the HR-ARS is more significant at the lowest generator,condenser and evaporator temperatures,as well as at high efficiency in the solution heat exchanger,in comparison to ARS system.Furthermore,the COP and exergy performance for the HR-ARS system was improved by 2.57%to 3.11%and 0.22%to 0.7%,respectively,while the recovering condensation heat for generation is around 1.51%–3.76%lower than with the ARS.It also was found that for all ranges of evaporator and condenser temperatures,the COP for the HR-ARS system is around 3%higher than that obtained with the ARS at the three different generator temperatures here analyzed,while when the solution heat exchanger effectiveness was increased from 0.7–1.0,the total exergy destruction for the HR-ARS resulted be 3.24%–5.01%smaller than the ARS system.Finally,it can be concluded that the components with the most exergy destroyed in the systems(80%to 94%)are the generator and absorber. 展开更多
关键词 absorption refrigeration system recovery condensation heat energy and exergy analysis LiBr-H_(2)O
在线阅读 下载PDF
Computational Analysis of the Effect of Nano Particle Material Motion on Mixed Convection Flow in the Presence of Heat Generation and Absorption 被引量:2
5
作者 Muhammad Ashraf Amir Abbas +3 位作者 Saqib Zia Yu-Ming Chu Ilyas Khan Kottakkaran Sooppy Nisar 《Computers, Materials & Continua》 SCIE EI 2020年第11期1809-1823,共15页
The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow mo... The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow model.The formulation of the flow model is based on basic universal equations of conservation of momentum,energy and mass.The prescribed flow model is converted to non-dimensional form by using suitable scaling.The obtained transformed equations are solved numerically by using finite difference scheme.For the analysis of above said behavior the computed numerical data for fluid velocity,temperature profile,and mass concentration for several constraints that is mixed convection parameterλt,modified mixed convection parameterλc,Prandtl number Pr,heat generation/absorption parameterδ,Schmidt number Sc,thermophoresis parameter Nt,and thermophoretic coefficient k are sketched in graphical form.Numerical results for skin friction,heat transfer rate and the mass transfer rate are tabulated for various emerging physical parameters.It is reported that in enhancement in heat,generation boosts up the fluid temperature at some positions of the surface of the sphere.As heat absorption parameter is decreased temperature field increases at position X=π/4 on the other hand,no alteration at other considered circumferential positions is noticed. 展开更多
关键词 Nano material mixed convection finite difference method heat generation/absorption SPHERES
在线阅读 下载PDF
Effects of space and temperature dependent internal heat generation/absorption on MHD flow of a nanofluid over a stretching sheet 被引量:1
6
作者 GANGA B. SARANYA S. +1 位作者 VISHNU GANESH N. ABDUL HAKEEM A.K. 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第6期945-954,共10页
In this paper we analyzed the effects of space and temperature dependent intemal heat generation/absorption (non-uniform heat source/sink) on magnetohydrodynamic boundary layer flow of water based nanofluid over a s... In this paper we analyzed the effects of space and temperature dependent intemal heat generation/absorption (non-uniform heat source/sink) on magnetohydrodynamic boundary layer flow of water based nanofluid over a stretching sheet with different nanoparticles. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied normally to the stretching sheet. A scaling group of transformation is used to reduce the governing momentum and energy equations into non-linear ordinary differential equations. The resulting differential equations are solved analytically using hypergeometric functions and numerically by the fourth order Runge-Kutta method with shooting technique. The influence of nanoparticle volume fraction, magnetic field, Prandtl number, non uniform heat source/sink, local skin friction coefficient and reduced Nusselt number are investigated for different nanoparticles. 展开更多
关键词 NANOFLUID MHD heat generation/absorption stretching sheet
原文传递
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption 被引量:1
7
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling Electromagnetic wave absorption
在线阅读 下载PDF
Magneto‑Dielectric Synergy and Multiscale Hierarchical Structure Design Enable Flexible Multipurpose Microwave Absorption and Infrared Stealth Compatibility 被引量:1
8
作者 Chen Li Leilei Liang +2 位作者 Baoshan Zhang Yi Yang Guangbin Ji 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期401-416,共16页
Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR clo... Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments. 展开更多
关键词 Microwave absorption Radar-infrared compatible stealth Wrinkled MXene Magneto-dielectric synergy MULTIFUNCTION
在线阅读 下载PDF
Low‑Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption 被引量:1
9
作者 Zizhuang He Lingzi Shi +6 位作者 Ran Sun Lianfei Ding Mukun He Jiaming Li Hua Guo Tiande Gao Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期191-204,共14页
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan... Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption. 展开更多
关键词 Magnetic heterointerfaces Phase evolution Interfacial polarization Magnetic coupling Electromagnetic wave absorption
在线阅读 下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
10
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption Corrosion protection
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
11
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Metal foams for the interfering energy conversion:Electromagnetic wave absorption,shielding,and sound attenuation 被引量:1
12
作者 Yujing Zhang Rui Liu +5 位作者 Chuyang Liu Yilin Zhang Liang Yan Jie Jiang Er Liu Feng Xu 《Journal of Materials Science & Technology》 2025年第12期258-282,共25页
Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight natur... Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight nature. These characteristics make them ideal for applications in vibration damping, heat insulation and weight reduction. In recent years, there has been increasing interest in the application of interfering energy conversion such as electromagnetic wave (EMW) and sound, where the metal foams could emerge as a solution. This paper will present a comprehensive review of the preparation methods as well as the interference energy converting mechanisms for metal foams. Typically, the progress and prospective aspects of metal foams for EMW absorption, electromagnetic interference (EMI) shielding and sound absorption have been emphasized. Through this review, we aspire to offer valuable insights for the development of multifunctional applications with metal foam materials. 展开更多
关键词 Metal foams EMW absorption EMI shielding Sound absorption
原文传递
Perspectives on metal-organic framework-derived microwave absorption materials 被引量:2
13
作者 Meng-Qi Wang Mao-Sheng Cao 《Journal of Materials Science & Technology》 2025年第11期37-52,共16页
Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to it... Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to its unique composition and bonding mode,which has advantages such as large specific surface area,high porosity,adjustable structure,and designable composition.Herein,MOF-derived MAMs are highlighted based on morphology and structure.The synthesis strategies of MOF-derived MAMs of different dimensions are discussed.On this basis,the structure-activity relationships can be deeply explored through the precise control of material structure and property by atomic engineering.Finally,perspectives are given for the existing problems of MOF-derived MAMs,which will open a new horizon and promote the development of MAMs. 展开更多
关键词 Metal-organic framework Atomic engineering Microwave absorption
原文传递
Semi-Active Sound Absorption Method with Acoustic Impedance Matching 被引量:1
14
作者 ZHU Congyun ZHANG Shaoqi DING Guofang 《Journal of Donghua University(English Edition)》 2025年第1期64-70,共7页
The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-... The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-frequency sound waves,a novel semi-active sound absorption method has been introduced.This method modulates the surface impedance of a loudspeaker positioned behind the sound-absorbing material,thereby altering the sound absorption coefficient.The theoretical sound absorption coefficient is calculated using MATLAB and compared with the experimental one.Results show that the method can effectively modulates the absorption coefficient in response to varying incident sound wave frequencies,ensuring that it remains at its peak value. 展开更多
关键词 acoustic impedance semi-active sound absorption rigid wall cavity depth sound absorption coefficient
在线阅读 下载PDF
MHD flow of Boungiorno model nanofluid over a vertical plate with internal heat generation/absorption
15
作者 B.Ganga S.Mohamed Yusuff Ansari +1 位作者 N.Vishnu Ganesh A.K.Abdul Hakeem 《Propulsion and Power Research》 SCIE 2016年第3期211-222,共12页
A mathematical analysis has been carried out to investigate the effect of internal heat generation/absorption on steady two-dimensional radiative magnetohydrodynamics(MHD)boundary-layer flow of a viscous,incompressibl... A mathematical analysis has been carried out to investigate the effect of internal heat generation/absorption on steady two-dimensional radiative magnetohydrodynamics(MHD)boundary-layer flow of a viscous,incompressible nanofluid over a vertical plate.A system of governing nonlinear PDEs is converted into a set of nonlinear ODEs by suitable similarity transformations and then solved analytically using HAM and numerically by the fourth order Runge–Kutta integration scheme with shooting method.The effects of different controlling parameters on the dimensionless velocity,temperature and nanoparticle volume fraction profiles are discussed graphically.The reduced Nusslet number and the local Sherwood number are tabulated.It is found that the nanosolid volume fraction profile decreases in the presence of heat generation and increases in the case of heat absorption and a reverse trend is observed in velocity profile.An excellent agreement is observed between present analytical and numerical results.Furthermore,comparisons have been made with bench mark solutions for a special case and obtained a very good agreement. 展开更多
关键词 Heat generation/absorption Homotopy analysis method Magnetohydrodynamics(MHD) NANOFLUID Vertical plate
原文传递
Construction of attapulgite-based one-dimensional nanonetwork composites with corrosion resistance for high-efficiency microwave absorption 被引量:2
16
作者 Kai Xu Qingqing Gao +6 位作者 Shaoqi Shi Pei Liu Yinxu Ni Zhilei Hao Gaojie Xu Yan Fu Fenghua Liu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期689-698,共10页
Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods e... Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers. 展开更多
关键词 microwave absorption corrosion resistance ATTAPULGITE TiO_(2) POLYANILINE
在线阅读 下载PDF
Adomian decomposition method for Hall and ion-slip effects on mixed convection flow of a chemically reacting Newtonian fluid between parallel plates with heat generation/absorption
17
作者 Ch.Ram Reddy O.Surender +1 位作者 Ch.Venkata Rao T.Pradeepa 《Propulsion and Power Research》 SCIE 2017年第4期296-306,共11页
This paper analyzes the heat and mass transfer characteristics on mixed convective fully developed flow in an electrically conducting Newtonian fluid between vertical parallel plates.The chemical reaction,heat generat... This paper analyzes the heat and mass transfer characteristics on mixed convective fully developed flow in an electrically conducting Newtonian fluid between vertical parallel plates.The chemical reaction,heat generation,Hall and ion-slip effects are taken into consideration.By using similarity transformations the nonlinear governing equations are reduced into dimensionless form and hence solved using Adomian decomposition method(ADM).The influence of magnetic parameter,Hall parameter,ion-slip parameter,chemical reaction parameter,and heat generation/absorption parameter on non-dimensional velocities,temperature and concentration profiles are exhibited graphically.In addition,the numerical data for skin friction,heat and mass transfer rates are shown in tabular form. 展开更多
关键词 Mixed convection Heat generation/absorption Hall and ion-slip effects Chemical reaction Adomian decomposition method(ADM)
原文传递
Micro-sized hexapod-like CuS/Cu_(9)S_(5) hybrid with broadband electromagnetic wave absorption 被引量:2
18
作者 Mengjun Han Di Lan +5 位作者 Zhiming Zhang Yizhi Zhao Jiaxiao Zou Zhenguo Gao Guanglei Wu Zirui Jia 《Journal of Materials Science & Technology》 2025年第11期302-312,共11页
Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesi... Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides. 展开更多
关键词 Heterogeneous interface Hexapod shape Transition metal sulfide Electromagnetic wave absorption
原文传递
Phase changes and electromagnetic wave absorption performance of XZnC(X=Fe/Co/Cu)loaded on melamine sponge hollow carbon composites 被引量:3
19
作者 Xiubo Xie Ruilin Liu +4 位作者 Chen Chen Di Lan Zhelin Chen Wei Du Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期566-577,共12页
Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melami... Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melamine sponge(MS)carbon composites were investigated through vacuum filtration followed by calcination.The FeZnC/CoZnC/CuZnC with carbon nanotubes(CNTs)were uniformly dispersed on the surface of melamine sponge carbon skeleton and Co-containing sample exhibits the highest CNTs concentration.The minimum reflection loss(RL_(min))of the CoZnC/MS composite(m_(composite):m_(paraffin)=1:1,m represents mass)reached-33.60 dB,and the effective absorption bandwidth(EAB)reached 9.60 GHz.The outstanding electromagnetic wave absorption(EMWA)properties of the CoZnC/MS composite can be attributed to its unique hollow structure,which leads to multiple reflections and scattering.The formed conductive network improves dielectric and conductive loss.The incorporation of Co enhances the magnetic loss capability and optimizes interfacial polarization and dipole polarization.By simultaneously improving dielectric and magnetic losses,ex-cellent impedance matching performance is achieved.The clarification of element replacement in XZnC/MS composites provides an effi-cient design perspective for high-performance non-stoichiometric carbide EMW absorbers. 展开更多
关键词 electromagnetic wave absorption three dimensional network structure melamine sponge derived carbon non-stoichiometric carbide
在线阅读 下载PDF
Absorption-Reflection-Transmission Power Coefficient Guiding Gradient Distribution of Magnetic MXene in Layered Composites for Electromagnetic Wave Absorption 被引量:2
20
作者 Yang Zhou Wen Zhang +7 位作者 Dong Pan Zhaoyang Li Bing Zhou Ming Huang Liwei Mi Chuntai Liu Yuezhan Feng Changyu Shen 《Nano-Micro Letters》 2025年第6期466-481,共16页
The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electrom... The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials. 展开更多
关键词 Magnetic MXene Layered and gradient structure Power coefficient Electromagnetic wave absorption
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部