Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of...Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.展开更多
With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,...With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.展开更多
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user...The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.展开更多
To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a b...To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.展开更多
The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex...The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.展开更多
The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation...The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation,focusing on their demonstrated potential to enhance production efficiency through automation and personalization.Despite these benefits,it is crucial to acknowledge the substantial initial computational investments required for training and deploying these models.We conduct an in-depth survey of cutting-edge generative AI technologies,encompassing models such as Stable Diffusion and GPT,and appraise pivotal large-scale datasets alongside quantifiable evaluation metrics.Review of the surveyed literature indicates the achievement of considerable maturity in the capacity of AI models to synthesize high-quality,aesthetically compelling anime visual images from textual prompts,alongside discernible progress in the generation of coherent narratives.However,achieving perfect long-form consistency,mitigating artifacts like flickering in video sequences,and enabling fine-grained artistic control remain critical ongoing challenges.Building upon these advancements,research efforts have increasingly pivoted towards the synthesis of higher-dimensional content,such as video and three-dimensional assets,with recent studies demonstrating significant progress in this burgeoning field.Nevertheless,formidable challenges endure amidst these advancements.Foremost among these are the substantial computational exigencies requisite for training and deploying these sophisticated models,particularly pronounced in the realm of high-dimensional generation such as video synthesis.Additional persistent hurdles include maintaining spatial-temporal consistency across complex scenes and mitigating ethical considerations surrounding bias and the preservation of human creative autonomy.This research underscores the transformative potential and inherent complexities of AI-driven synergy within the creative industries.We posit that future research should be dedicated to the synergistic fusion of diffusion and autoregressive models,the integration of multimodal inputs,and the balanced consideration of ethical implications,particularly regarding bias and the preservation of human creative autonomy,thereby establishing a robust foundation for the advancement of anime creation and the broader landscape of AI-driven content generation.展开更多
The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of th...The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of the mudstone in the Shuixigou Group,especially the mudstone at the top of the Sangonghe Formation,are unclear.Taking the source rocks of the Xishanyao Formation and the Sangonghe Formation as objectives,this study conducted rock pyrolysis and gold tube simulation experiment to investigate their hydrocarbon generation characteristics and differences.Our results indicate that the source rocks of the Xishanyao Formation include mudstone,carbonaceous mudstone and coal,and the quality of the source rocks is highly heterogeneous;the source rocks of the Sangonghe Formation are mainly composed of mudstone,and it is a good gas source rock.Simulation experiments found that the activation energy required for the generation of gaseous hydrocarbons by the mudstone of the Sangonghe Formation is lower than that by the mudstone of the Xishanyao Formation.The hydrocarbon generation process can be divided into three stages for both formations,but the gas generation potential of the Xishanyao Formation mudstone is higher than that of the Sangonghe Formation mudstone.A large amount of hydrocarbon was generated by the mudstone of the Xishanyao Formation when entering late thermal evolution,of which methane is dominant,mainly from the demethylation reaction of mature kerogen.On the other hand,a large amount of hydrocarbon was generated by the mudstone of the Sangonghe Formation in the early stage of thermal evolution,of which light hydrocarbon and wet gas are dominant,mainly from the early cracking stage of kerogen.This difference may be attributed to the structure of kerogen.The mudstone of the Xishanyao Formation is conducive to the formation of highly mature dry gas reservoirs,while the mudstone of the Sangonghe Formation is conducive to the formation of low maturity condensate gas and volatile oil reservoirs.The research result provides a scientific basis for the comparison of oil and gas sources and the evaluation of oil and gas resources in the Turpan-Hami Basin.展开更多
Sodium-ion batteries have gradually been commercialized due to their wide range of material sources and low cost.However,there are few studies focusing on the commercial sodium-ion battery safety,especially the relati...Sodium-ion batteries have gradually been commercialized due to their wide range of material sources and low cost.However,there are few studies focusing on the commercial sodium-ion battery safety,especially the relationship between heat and gas generation is unclear.This work conducts the thermal runaway(TR)experiments of commercial 18650 sodium-ion batteries with different states of charge(SOCs)under adiabatic accelerated rate calorimetry and localized overheating.The results show that heat generation values of 50% and 100%SOC batteries during TR are 175.2 and 328.2 J g^(-1),respectively.Whereas,0%SOC batteries do not trigger TR.Moreover,the reaction sources and pathways of gas generation during TR are critically sorted out.Finally,two important conclusions are obtained.(i)During the five stages of TR,the heat generation from the safe venting to the triggering of TR stage is the highest in 50%SOC batteries,accounting for 62.5% of the total heat generation.However,for 100%SOC batteries,the heat generation from triggering TR to maximum temperature stage has the largest proportion during TR,at 57%.The 50%SOC batteries present characteristic of slow heat generation,while the 100%SOC batteries show characteristics of accelerated heat generation.(ii)Based on dimensionless analysis,the heat/gas generation ratios of 50% and 100%SOC batteries are 0.262 and 0.028,respectively.The gas generation behavior occur earlier than heat generation behavior during the whole process of TR of sodium-ion batteries.This study provides a direction for the development of high-safety sodium-ion batteries and thermal runaway suppression technology.展开更多
Artificial intelligence(AI)assisted ultrasound report generation represents a technology that leverages artificial intelligence to convert ultrasound imaging analysis results into structured diagnostic reports.By inte...Artificial intelligence(AI)assisted ultrasound report generation represents a technology that leverages artificial intelligence to convert ultrasound imaging analysis results into structured diagnostic reports.By integrating image recognition and natural language generation models,AI systems can automatically detect and analyze lesions or abnormalities in ultrasound images,generating textual descriptions of diagnostic conclusions(e.g.,fatty liver,liver fibrosis,automated BIRADS grading of breast lesions),imaging findings,and clinical recommendations to form comprehensive reports.This technology enhances the efficiency and accuracy of imaging diagnosis,reduces physicians’workloads,ensures report standardization and consistency,and provides robust support for clinical decisionmaking.Current state-of-the-art algorithms for automated ultrasound report generation primarily rely on vision-language models,which harness the generalization capabilities of large language models and large vision models through multimodal(language+vision)feature alignment.However,existing approaches inadequately address challenges such as numerical measurement generation,effective utilization of report templates,incorporation of historical reports,learning text-image correlations,and overfitting under limited data conditions.This paper aims to introduce the current state of research on ultrasound report generation,the existing issues,and to provide some thoughts for future research.展开更多
Generation of good-quality distractors is a key and time-consuming task associated withmultiple-choice questions(MCQs),one of the assessment items that have dominated the educational field for years.Recent advances in...Generation of good-quality distractors is a key and time-consuming task associated withmultiple-choice questions(MCQs),one of the assessment items that have dominated the educational field for years.Recent advances in language models and architectures present an opportunity for helping teachers to generate and update these elements to the required speed and scale of widespread increase in online education.This study focuses on a text-to-text approach for joints generation of distractors for MCQs,where the context,question and correct answer are used as input,while the set of distractors corresponds to the output,allowing the generation of three distractors in a singlemodel inference.By fine-tuning FlanT5 models and LongT5 with TGlobal attention using a RACE-based dataset,the potential of this approach is explored,demonstrating an improvement in the BLEU and ROUGE-L metrics when compared to previous works and a GPT-3.5 baseline.Additionally,BERTScore is introduced in the evaluation,showing that the fine-tuned models generate distractors semantically close to the reference,but the GPT-3.5 baseline still outperforms in this area.A tendency toward duplicating distractors is noted,although models fine-tuned with Low-Rank Adaptation(LoRA)and 4-bit quantization showcased a significant reduction in duplicated distractors.展开更多
Accurate prediction of the composition of pyrolysis products is the prerequisite for achieving directional regulation of organic-rich shale pyrolysis and conversion products.In this paper,the classical segmented pyrol...Accurate prediction of the composition of pyrolysis products is the prerequisite for achieving directional regulation of organic-rich shale pyrolysis and conversion products.In this paper,the classical segmented pyrolysis kinetics model and a new refined pyrolysis kinetics model were used to forecast the composition distribution of hydrocarbon generation products co-heated by supercritical water and medium and low maturity organic-rich shale.The prediction accuracy of the two reaction kinetics models for the composition of pyrolysis products of organic-rich shale was compared.The reaction path of hydrocarbon generation in centimeter sized organic-rich shale under the action of supercritical water was identified.The results show that the prediction accuracy of the classical segmented pyrolysis kinetics model was poor at the initial stage of the reaction,and gradually increased with increasing time.The prediction error can reach less than 25%when the reaction time was 12 h.The new refined model of reaction kinetics established is better than the classical reaction kinetics model in predicting the product distribution of pyrolysis oil and gas,and its prediction error is less than 14%in this paper.The reaction paths of hydrocarbon generation in centimeter sized organic-rich shale under supercritical water conversion mainly include organic-rich shale directly generates asphaltene and saturated hydrocarbon,asphaltene pyrolysis generates saturated hydrocarbon,aromatic hydrocarbon and resin,saturated hydrocarbon,aromatic hydrocarbon and resin polymerization generates asphaltene,and saturated hydrocarbon,resin and asphaltene generates gas.The reason for the difference of centimeter sized and millimeter sized medium and low maturity organic-rich shales hydrocarbon generation in supercritical water is that the increase of shale size promotes the reaction path of polymerization of saturated hydrocarbon and aromatic hydrocarbon to asphaltene.展开更多
Rice(Oryza sativa L.)plays a pivotal role in global food security,yet its breeding is constrained by its long generation time and seasonality.To enhance rice breeding efficiency and meet future food demands,we have de...Rice(Oryza sativa L.)plays a pivotal role in global food security,yet its breeding is constrained by its long generation time and seasonality.To enhance rice breeding efficiency and meet future food demands,we have developed a vertical hydroponic breeding system integrated with light-emitting diodes(LEDs)light-ing in a closed plant factory(PF),which significantly accelerates rice growth and generation advance-ment.The results show that indica rice can be harvested as early as after 63 days of cultivation,a 50%reduction compared with field cultivation,enabling the annual harvesting of 5-6 generations within the PF.A hyperspectral imaging(HSI)system and attenuated total reflectance infrared(ATR-IR)spec-troscopy were further employed to characterize the chemical composition of the PF-and field-cultivated rice.Metabolomics analysis with ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)and gas chromatography-mass spectrometry(GC-MS)revealed that,com-pared with the field-cultivated rice,the PF-cultivated rice exhibited an up-regulation of total phenolic acids along with 68 non-volatile and 19 volatile metabolites,such as isovitexin,succinic acid,and methylillicinone F.Overall,this study reveals the unique metabolic profile of PF-cultivated rice and high-lights the potential of PFs to accelerate the breeding of crops such as rice,offering an innovative agricul-tural strategy to support food security in the face of global population growth and climate change.展开更多
Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bu...Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bulkiness of the device.In this work,we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves(SHW)and the third harmonic waves(THW)in a single nonlinear crystal.Through analyzing both small-signal and large-signal regimes,we reveal the complex coupling mechanisms between SHW and THW generation processes.Using periodically poled lithium niobate as an example,we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power.This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.展开更多
Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'...Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'(determinate)and‘Moneymaker'(indeterminate)varieties and evaluated the best combination in conjunction with embryo rescue.Five container sizes with volumes of 0.2 L(XS),0.45 L(S),0.8 L(M),1.3 L(L),and6 L(XL),were evaluated in the first experiment under the autumn cycle.We found that plants grown in XL containers exhibited better development and required less time from sowing to anthesis(DSA)and from anthesis to fruit ripening(DAR).In the second experiment,using XL containers in the autumn-winter cycle,we evaluated the effects of cold priming at the cotyledonary stage,water stress,P supplementation,and K supplementation on generation time.Compared to the control,we found that cold priming significantly reduced the number of leaves,plant height to first the inflorescence,and DSA(2.7 d),whereas K supplementation reduced the DAR(8.8 d).In contrast,water stress and P supplementation did not significantly affect any of the measured traits like DAR,DSA or fruit set.To validate these data,in a third experiment with XL containers in the spring-summer cycle,the combination of cold priming and K supplementation was tested,confirming the significant effect of this combination on the reduction of generation time(2.9 d for DSA and 3.9 d for DAR)compared to the control.Embryo rescue during the cell expansion cycle(average of 22.0 d and 23.3 d after anthesis for‘M82'and‘Moneymaker',respectively)allowed the shortening of the generation time by 8.7 d in‘M82'and 11.6 d in‘Moneymaker'compared to the in planta fruit ripening.The combination of agronomic treatments with embryo rescue can effectively increase the number of generations per year from three to four for speed breeding of tomato.展开更多
Ultrasound neuromodulation is a powerful tool for brain investigation and holds great promise for treating brain diseases.However,due to the heterogeneous acoustic properties of skulls,existing ultrasound neuromodulat...Ultrasound neuromodulation is a powerful tool for brain investigation and holds great promise for treating brain diseases.However,due to the heterogeneous acoustic properties of skulls,existing ultrasound neuromodulation faces the challenge of severe transcranial acoustic attenuation.To overcome such limitations,we report an implantable bio-chip for visible and controllable mi-crowave-induced transcranial acoustic generation(MI-tAG).The bio-chip is soft,flexible,and biocompatible,with a thickness of 3mm,making it suitable for human intracranial implantation.The constituted fluid channels can cover an area of 50 mm×60 mm,enabling widefield neuronstimulation.The particles filled in the fluid channels have both high microwave absorption.ensuring efficient ultrasound generation,and magnetism,allowing noncontact and flexible ma-nipulation by external magnetic fields.The experimental results demonstrate that the optimal MI-tAG can be realized by the combination of particles arranged in a linear pattern and corre-sponding illumination via a linearly polarized microwave.Stability evaluation indicates that the particles can maintain a consistent acoustic intensity without degradation for at least seven days.The results of in vitro and in vivo experiments show that the MII-tAG can manipulate ultrasound sources and visibly locate them in real time.This study provides a potential innovative approach for future ultrasound neuromodulation,inspiring the development of more useful methods to advance brain research.This study introduces a promising innovative approach for transcranial acoustic generation,potentially inspiring the development of more effective methods for ad-vancing ultrasound neuromodulation.展开更多
The gut microbiome is a complex community of microorganisms that plays a direct role in the health of both the gastrointestinal tract and the entire body.Numerous factors influence the abundance and diversity of gut m...The gut microbiome is a complex community of microorganisms that plays a direct role in the health of both the gastrointestinal tract and the entire body.Numerous factors influence the abundance and diversity of gut microbiota.Microbial imbalance can contribute to disease development.Probiotics are biologically active supplements with promising properties that have high therapeutic potential.Currently,there is a tendency to switch from classic probiotic microorganisms represented by lactic acid bacteria to next-generation probiotics due to their unique ability to influence the human immune system.New-generation probiotics include bacteria such as Akkermansia muciniphila,Faecalibacterium prausnitzii,Bacteroides sp.,Prevotella sp.,Roseburia sp.,and Eubacterium sp.Nextgeneration probiotics can affect host immune cells by secreting various substances,such as butyrate in F.prausnitzii,or through interaction with Toll-like receptors of intestinal epithelial cells,such as A.muciniphila.Studying the role of next-generation probiotics in immune regulation is a promising area of research.This study describes the interactions of next-generation probiotics with the immune system.Understanding the mechanisms of such interactions will improve the treatment of various diseases.展开更多
Since the idea of embodied artificial intelligence was born,the U.S.has been an international frontrunner in the research and development(R&D)and application of the technology,while China has been a capable chaser...Since the idea of embodied artificial intelligence was born,the U.S.has been an international frontrunner in the research and development(R&D)and application of the technology,while China has been a capable chaser in recent years,particularly in the area of humanoid robots.展开更多
BACKGROUND China has recently encountered severe challenges associated with population aging.Parents of first-generation only children face significant challenges regarding elderly care needs and the associated negati...BACKGROUND China has recently encountered severe challenges associated with population aging.Parents of first-generation only children face significant challenges regarding elderly care needs and the associated negative emotions.AIM To analyze the elderly care needs of first-generation only child parents in China and identify factors that influence negative emotions.METHODS This study used a cross-sectional design.Convenience sampling was used to select 1580 elderly individuals who met the inclusion criteria in a Chinese city between June and September 2022.A questionnaire was administered to collect general information about participants.Depression and anxiety were assessed using the patient health questionnaire-9 and generalized anxiety disorder-7 scale,respectively.A logistic regression analysis was performed to evaluate the relevant correlations.RESULTS Among 1580 first-generation only child parents,1120(70.89%)preferred family based care,324(20.51%)opted for community care,and 136(8.61%)chose institutional care,with 460(29.11%)reporting negative emotions.Significant differences in the distribution of negative emotions among only child parents were observed based on age,marital status,living conditions,disability,type of chronic disease,frailty status,and family support(P<0.05).The regression analysis indicated that disability,type of chronic disease,living environment,frailty status,and level of family support were independent risk factors for negative emotions among parents with only children(P<0.05).CONCLUSION Elderly care for parents of only children is primarily family-based.Independent risk factors for negative emotions in this group include disability,chronic disease type,and living environment.展开更多
Collagen characterization is crucial for disease diagnostics,prevention,and understanding,with growing focus on quantitative analysis at tissue and fibril levels.Numerous models have been developed to quantify structu...Collagen characterization is crucial for disease diagnostics,prevention,and understanding,with growing focus on quantitative analysis at tissue and fibril levels.Numerous models have been developed to quantify structural changes in collagen linked to various pathologies.However,many approaches remain limited to conceptual descriptions or rely on custom software,often requiring programming skills,which re-stricts their clinical application and potential impact.We introduce CollagenFitJ,a plugin for the open-source software platform ImageJ/FIJI,which represents a widely used microscopy image analysis tool.CollagenFitJ makes use of the cylindrical symmetry model for collagen to enable facile quantitative assessment of polarization-resolved second harmonic generation microscopy image stacks.The plugin’s main outputs are collagen structure-related maps(e.g.,orientation and anisotropy of collagen fibrils within the focal volume),which can be accompanied by distribution and randomness maps for a series of structure-related parameters.We describe and validate the use of CollagenFitJ on images acquired on rat-tail tendons,collagen capsules surrounding human thyroid nodules,and mouse colon tumors,using both scanning and widefield second harmonic generation microscopy datasets.The plugin was designed to be user-friendly,requiring little to no experience in image processing and coding to facilitate access for life scientists,medical staff,and microscopy practitioners with limited coding skills or time availability required for coding.展开更多
Objective:This study aims to assess nursing faculty’s perceptions and challenges in teaching Generation Z students,providing insights into the barriers and opportunities in bridging the generational learning gap.Mate...Objective:This study aims to assess nursing faculty’s perceptions and challenges in teaching Generation Z students,providing insights into the barriers and opportunities in bridging the generational learning gap.Material and Methods:A descriptive cross-sectional study was conducted among 335 nursing faculty members in the Delhi NCR region.Participants were recruited using a snowball sampling technique,and data were collected via a self-administered structured questionnaire.The questionnaire measured faculty perceptions and challenges using a Likert scale,with reliability assessed using Cronbach’s alpha.Data were analyzed through Descriptive and inferential statistics.Results:Findings revealed that while faculty recognize the need for technology integration and student-centered learning,they face challenges such as academic integrity concerns,psychological stress,and adapting to Gen Z’s expectations for personalized learning.The correlation between faculty perceptions and challenges was negligible(r=0.020,P=0.717),indicating that faculty perceptions remain stable despite these difficulties.Conclusion:Nursing faculty need to adapt pedagogical approaches to meet the evolving needs of Gen Z students.Bridging the gap between traditional teaching methods and the evolving needs of Generation Z requires faculty training,institutional support,and curriculum innovations.展开更多
基金National Natural Science Foundation of China(No.519667013)Institution of Higher Learning Scientific Research Project of Gansu Province of China(No.2016B-032)。
文摘Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.
基金supported by Science and Technology Project of State Grid Anhui Electric Power Co.,Ltd. (No.B6120922000A).
文摘With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.
基金funding from King Saud University through Researchers Supporting Project number(RSP2024R387),King Saud University,Riyadh,Saudi Arabia.
文摘The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.
文摘To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.
基金supported by the National Nat-ural Science Foundation of China(Nos.12192251,12174185,92163216,and 62288101).
文摘The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.
基金supported by the National Natural Science Foundation of China(Grant No.62202210).
文摘The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation,focusing on their demonstrated potential to enhance production efficiency through automation and personalization.Despite these benefits,it is crucial to acknowledge the substantial initial computational investments required for training and deploying these models.We conduct an in-depth survey of cutting-edge generative AI technologies,encompassing models such as Stable Diffusion and GPT,and appraise pivotal large-scale datasets alongside quantifiable evaluation metrics.Review of the surveyed literature indicates the achievement of considerable maturity in the capacity of AI models to synthesize high-quality,aesthetically compelling anime visual images from textual prompts,alongside discernible progress in the generation of coherent narratives.However,achieving perfect long-form consistency,mitigating artifacts like flickering in video sequences,and enabling fine-grained artistic control remain critical ongoing challenges.Building upon these advancements,research efforts have increasingly pivoted towards the synthesis of higher-dimensional content,such as video and three-dimensional assets,with recent studies demonstrating significant progress in this burgeoning field.Nevertheless,formidable challenges endure amidst these advancements.Foremost among these are the substantial computational exigencies requisite for training and deploying these sophisticated models,particularly pronounced in the realm of high-dimensional generation such as video synthesis.Additional persistent hurdles include maintaining spatial-temporal consistency across complex scenes and mitigating ethical considerations surrounding bias and the preservation of human creative autonomy.This research underscores the transformative potential and inherent complexities of AI-driven synergy within the creative industries.We posit that future research should be dedicated to the synergistic fusion of diffusion and autoregressive models,the integration of multimodal inputs,and the balanced consideration of ethical implications,particularly regarding bias and the preservation of human creative autonomy,thereby establishing a robust foundation for the advancement of anime creation and the broader landscape of AI-driven content generation.
基金supported by the China Petroleum Science and Technology Major Project(No.2023ZZ18-03).
文摘The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of the mudstone in the Shuixigou Group,especially the mudstone at the top of the Sangonghe Formation,are unclear.Taking the source rocks of the Xishanyao Formation and the Sangonghe Formation as objectives,this study conducted rock pyrolysis and gold tube simulation experiment to investigate their hydrocarbon generation characteristics and differences.Our results indicate that the source rocks of the Xishanyao Formation include mudstone,carbonaceous mudstone and coal,and the quality of the source rocks is highly heterogeneous;the source rocks of the Sangonghe Formation are mainly composed of mudstone,and it is a good gas source rock.Simulation experiments found that the activation energy required for the generation of gaseous hydrocarbons by the mudstone of the Sangonghe Formation is lower than that by the mudstone of the Xishanyao Formation.The hydrocarbon generation process can be divided into three stages for both formations,but the gas generation potential of the Xishanyao Formation mudstone is higher than that of the Sangonghe Formation mudstone.A large amount of hydrocarbon was generated by the mudstone of the Xishanyao Formation when entering late thermal evolution,of which methane is dominant,mainly from the demethylation reaction of mature kerogen.On the other hand,a large amount of hydrocarbon was generated by the mudstone of the Sangonghe Formation in the early stage of thermal evolution,of which light hydrocarbon and wet gas are dominant,mainly from the early cracking stage of kerogen.This difference may be attributed to the structure of kerogen.The mudstone of the Xishanyao Formation is conducive to the formation of highly mature dry gas reservoirs,while the mudstone of the Sangonghe Formation is conducive to the formation of low maturity condensate gas and volatile oil reservoirs.The research result provides a scientific basis for the comparison of oil and gas sources and the evaluation of oil and gas resources in the Turpan-Hami Basin.
基金supported by the National Key R&D Program of China(No.2024YFE0209200)National Natural Science Foundation of China(No.52404259)+1 种基金Postgraduate Academic Innovation Project of Anhui Province(No.2023xscx009)supported by Youth Innovation Promotion Association CAS(No.Y201768)。
文摘Sodium-ion batteries have gradually been commercialized due to their wide range of material sources and low cost.However,there are few studies focusing on the commercial sodium-ion battery safety,especially the relationship between heat and gas generation is unclear.This work conducts the thermal runaway(TR)experiments of commercial 18650 sodium-ion batteries with different states of charge(SOCs)under adiabatic accelerated rate calorimetry and localized overheating.The results show that heat generation values of 50% and 100%SOC batteries during TR are 175.2 and 328.2 J g^(-1),respectively.Whereas,0%SOC batteries do not trigger TR.Moreover,the reaction sources and pathways of gas generation during TR are critically sorted out.Finally,two important conclusions are obtained.(i)During the five stages of TR,the heat generation from the safe venting to the triggering of TR stage is the highest in 50%SOC batteries,accounting for 62.5% of the total heat generation.However,for 100%SOC batteries,the heat generation from triggering TR to maximum temperature stage has the largest proportion during TR,at 57%.The 50%SOC batteries present characteristic of slow heat generation,while the 100%SOC batteries show characteristics of accelerated heat generation.(ii)Based on dimensionless analysis,the heat/gas generation ratios of 50% and 100%SOC batteries are 0.262 and 0.028,respectively.The gas generation behavior occur earlier than heat generation behavior during the whole process of TR of sodium-ion batteries.This study provides a direction for the development of high-safety sodium-ion batteries and thermal runaway suppression technology.
文摘Artificial intelligence(AI)assisted ultrasound report generation represents a technology that leverages artificial intelligence to convert ultrasound imaging analysis results into structured diagnostic reports.By integrating image recognition and natural language generation models,AI systems can automatically detect and analyze lesions or abnormalities in ultrasound images,generating textual descriptions of diagnostic conclusions(e.g.,fatty liver,liver fibrosis,automated BIRADS grading of breast lesions),imaging findings,and clinical recommendations to form comprehensive reports.This technology enhances the efficiency and accuracy of imaging diagnosis,reduces physicians’workloads,ensures report standardization and consistency,and provides robust support for clinical decisionmaking.Current state-of-the-art algorithms for automated ultrasound report generation primarily rely on vision-language models,which harness the generalization capabilities of large language models and large vision models through multimodal(language+vision)feature alignment.However,existing approaches inadequately address challenges such as numerical measurement generation,effective utilization of report templates,incorporation of historical reports,learning text-image correlations,and overfitting under limited data conditions.This paper aims to introduce the current state of research on ultrasound report generation,the existing issues,and to provide some thoughts for future research.
基金supported by the Universidad de Alcalá(UAH)under Grant PIUAH21/IA-010Comunidad Autonóma de Madrid under Grant CM/JIN/2021-034.
文摘Generation of good-quality distractors is a key and time-consuming task associated withmultiple-choice questions(MCQs),one of the assessment items that have dominated the educational field for years.Recent advances in language models and architectures present an opportunity for helping teachers to generate and update these elements to the required speed and scale of widespread increase in online education.This study focuses on a text-to-text approach for joints generation of distractors for MCQs,where the context,question and correct answer are used as input,while the set of distractors corresponds to the output,allowing the generation of three distractors in a singlemodel inference.By fine-tuning FlanT5 models and LongT5 with TGlobal attention using a RACE-based dataset,the potential of this approach is explored,demonstrating an improvement in the BLEU and ROUGE-L metrics when compared to previous works and a GPT-3.5 baseline.Additionally,BERTScore is introduced in the evaluation,showing that the fine-tuned models generate distractors semantically close to the reference,but the GPT-3.5 baseline still outperforms in this area.A tendency toward duplicating distractors is noted,although models fine-tuned with Low-Rank Adaptation(LoRA)and 4-bit quantization showcased a significant reduction in duplicated distractors.
基金support by the Basic Science Center Program of the Ordered Energy Conversion of the National Nature Science Foundation of China(NO.52488201)is gratefully acknowledged.
文摘Accurate prediction of the composition of pyrolysis products is the prerequisite for achieving directional regulation of organic-rich shale pyrolysis and conversion products.In this paper,the classical segmented pyrolysis kinetics model and a new refined pyrolysis kinetics model were used to forecast the composition distribution of hydrocarbon generation products co-heated by supercritical water and medium and low maturity organic-rich shale.The prediction accuracy of the two reaction kinetics models for the composition of pyrolysis products of organic-rich shale was compared.The reaction path of hydrocarbon generation in centimeter sized organic-rich shale under the action of supercritical water was identified.The results show that the prediction accuracy of the classical segmented pyrolysis kinetics model was poor at the initial stage of the reaction,and gradually increased with increasing time.The prediction error can reach less than 25%when the reaction time was 12 h.The new refined model of reaction kinetics established is better than the classical reaction kinetics model in predicting the product distribution of pyrolysis oil and gas,and its prediction error is less than 14%in this paper.The reaction paths of hydrocarbon generation in centimeter sized organic-rich shale under supercritical water conversion mainly include organic-rich shale directly generates asphaltene and saturated hydrocarbon,asphaltene pyrolysis generates saturated hydrocarbon,aromatic hydrocarbon and resin,saturated hydrocarbon,aromatic hydrocarbon and resin polymerization generates asphaltene,and saturated hydrocarbon,resin and asphaltene generates gas.The reason for the difference of centimeter sized and millimeter sized medium and low maturity organic-rich shales hydrocarbon generation in supercritical water is that the increase of shale size promotes the reaction path of polymerization of saturated hydrocarbon and aromatic hydrocarbon to asphaltene.
基金supported by the National Key Research and Development Program(2023YFF1001500)the Local Financial Funds of National Agricultural Science and Technology Center,Chengdu(NASC2022KR02,NASC2023TD08,NASC2021ST08,NASC2021PC04,NASC2022KR07,NASC2022KR06,and NASC2023ST04)+2 种基金the Agricultural Science and Technology Innova-tion Program(ASTIP-34-IUA-01,ASTIP-34-IUA-02,ASTIP-IUA-2023003,and ASTIP2024-34-IUA-09)the Central Public-interest Scientific Institution Basal Research Fund(Y2023YJ07 and SZ202403)the Sichuan Science and Technology Program(2023YFN003,2024NSFC1261,2023YFQ0100,and 2023ZYD0089).
文摘Rice(Oryza sativa L.)plays a pivotal role in global food security,yet its breeding is constrained by its long generation time and seasonality.To enhance rice breeding efficiency and meet future food demands,we have developed a vertical hydroponic breeding system integrated with light-emitting diodes(LEDs)light-ing in a closed plant factory(PF),which significantly accelerates rice growth and generation advance-ment.The results show that indica rice can be harvested as early as after 63 days of cultivation,a 50%reduction compared with field cultivation,enabling the annual harvesting of 5-6 generations within the PF.A hyperspectral imaging(HSI)system and attenuated total reflectance infrared(ATR-IR)spec-troscopy were further employed to characterize the chemical composition of the PF-and field-cultivated rice.Metabolomics analysis with ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)and gas chromatography-mass spectrometry(GC-MS)revealed that,com-pared with the field-cultivated rice,the PF-cultivated rice exhibited an up-regulation of total phenolic acids along with 68 non-volatile and 19 volatile metabolites,such as isovitexin,succinic acid,and methylillicinone F.Overall,this study reveals the unique metabolic profile of PF-cultivated rice and high-lights the potential of PFs to accelerate the breeding of crops such as rice,offering an innovative agricul-tural strategy to support food security in the face of global population growth and climate change.
基金supported by the Science and Technology Project of Guangdong Province,China(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.12434016)+1 种基金the National Key Research and Development Program of China(Grant No.2023YFA1406900)the Fund of the National Postdoctoral Researcher Program(Grant No.GZB20240785).
文摘Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bulkiness of the device.In this work,we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves(SHW)and the third harmonic waves(THW)in a single nonlinear crystal.Through analyzing both small-signal and large-signal regimes,we reveal the complex coupling mechanisms between SHW and THW generation processes.Using periodically poled lithium niobate as an example,we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power.This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.
基金funded by the European Commission H2020 Research and Innovation Programme through the HARNESSTOM innovation action(Grant No.101000716)Grant CIPROM/2021/020(project SOLECO)funded by Conselleria d’Innovació,Universitats,Ciència i Societat Digital(Generalitat Valenciana,Spain)Pietro Gramazio received a post-doctoral fellowship(Grant No.RYC2021-031999-I)funded by MCIN/AEI/10.13039/501100011033 and by“European Union NextGenerationEU/PRTR”。
文摘Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'(determinate)and‘Moneymaker'(indeterminate)varieties and evaluated the best combination in conjunction with embryo rescue.Five container sizes with volumes of 0.2 L(XS),0.45 L(S),0.8 L(M),1.3 L(L),and6 L(XL),were evaluated in the first experiment under the autumn cycle.We found that plants grown in XL containers exhibited better development and required less time from sowing to anthesis(DSA)and from anthesis to fruit ripening(DAR).In the second experiment,using XL containers in the autumn-winter cycle,we evaluated the effects of cold priming at the cotyledonary stage,water stress,P supplementation,and K supplementation on generation time.Compared to the control,we found that cold priming significantly reduced the number of leaves,plant height to first the inflorescence,and DSA(2.7 d),whereas K supplementation reduced the DAR(8.8 d).In contrast,water stress and P supplementation did not significantly affect any of the measured traits like DAR,DSA or fruit set.To validate these data,in a third experiment with XL containers in the spring-summer cycle,the combination of cold priming and K supplementation was tested,confirming the significant effect of this combination on the reduction of generation time(2.9 d for DSA and 3.9 d for DAR)compared to the control.Embryo rescue during the cell expansion cycle(average of 22.0 d and 23.3 d after anthesis for‘M82'and‘Moneymaker',respectively)allowed the shortening of the generation time by 8.7 d in‘M82'and 11.6 d in‘Moneymaker'compared to the in planta fruit ripening.The combination of agronomic treatments with embryo rescue can effectively increase the number of generations per year from three to four for speed breeding of tomato.
基金supported by the National Key R&D Program of China under grant 2023YFF0715303in part by the National Natural Science Foundation of China under Grant Nos.62305148,62105140,62022037,and 61775028+2 种基金in part by the Department of Science and Technology of Guangdong Province under Grant Nos.2019ZT08Y191 and 2022B1212010003in part by the Shenzhen Science and Technology Program under Grant Nos.JCYJ20220530114010023,RCJC20231211090039066,20231116104616001,KQTD20190929172743294,JCYJ20230807093105010,RCBS20231211090802011in part by the Startup Grant from Southern University of Science and Technology under Grant No.PDJH2021C008.
文摘Ultrasound neuromodulation is a powerful tool for brain investigation and holds great promise for treating brain diseases.However,due to the heterogeneous acoustic properties of skulls,existing ultrasound neuromodulation faces the challenge of severe transcranial acoustic attenuation.To overcome such limitations,we report an implantable bio-chip for visible and controllable mi-crowave-induced transcranial acoustic generation(MI-tAG).The bio-chip is soft,flexible,and biocompatible,with a thickness of 3mm,making it suitable for human intracranial implantation.The constituted fluid channels can cover an area of 50 mm×60 mm,enabling widefield neuronstimulation.The particles filled in the fluid channels have both high microwave absorption.ensuring efficient ultrasound generation,and magnetism,allowing noncontact and flexible ma-nipulation by external magnetic fields.The experimental results demonstrate that the optimal MI-tAG can be realized by the combination of particles arranged in a linear pattern and corre-sponding illumination via a linearly polarized microwave.Stability evaluation indicates that the particles can maintain a consistent acoustic intensity without degradation for at least seven days.The results of in vitro and in vivo experiments show that the MII-tAG can manipulate ultrasound sources and visibly locate them in real time.This study provides a potential innovative approach for future ultrasound neuromodulation,inspiring the development of more useful methods to advance brain research.This study introduces a promising innovative approach for transcranial acoustic generation,potentially inspiring the development of more effective methods for ad-vancing ultrasound neuromodulation.
基金carried out at the expense of a grant from the Russian Science Foundation No.24-24-20036,https://rscf.ru/project/24-24-20036(accessed on 5 June 2025).
文摘The gut microbiome is a complex community of microorganisms that plays a direct role in the health of both the gastrointestinal tract and the entire body.Numerous factors influence the abundance and diversity of gut microbiota.Microbial imbalance can contribute to disease development.Probiotics are biologically active supplements with promising properties that have high therapeutic potential.Currently,there is a tendency to switch from classic probiotic microorganisms represented by lactic acid bacteria to next-generation probiotics due to their unique ability to influence the human immune system.New-generation probiotics include bacteria such as Akkermansia muciniphila,Faecalibacterium prausnitzii,Bacteroides sp.,Prevotella sp.,Roseburia sp.,and Eubacterium sp.Nextgeneration probiotics can affect host immune cells by secreting various substances,such as butyrate in F.prausnitzii,or through interaction with Toll-like receptors of intestinal epithelial cells,such as A.muciniphila.Studying the role of next-generation probiotics in immune regulation is a promising area of research.This study describes the interactions of next-generation probiotics with the immune system.Understanding the mechanisms of such interactions will improve the treatment of various diseases.
文摘Since the idea of embodied artificial intelligence was born,the U.S.has been an international frontrunner in the research and development(R&D)and application of the technology,while China has been a capable chaser in recent years,particularly in the area of humanoid robots.
基金Supported by General Projects of Henan Province Universities Humanities and Social Sciences Research in 2023,No.2023-ZDJH-533.
文摘BACKGROUND China has recently encountered severe challenges associated with population aging.Parents of first-generation only children face significant challenges regarding elderly care needs and the associated negative emotions.AIM To analyze the elderly care needs of first-generation only child parents in China and identify factors that influence negative emotions.METHODS This study used a cross-sectional design.Convenience sampling was used to select 1580 elderly individuals who met the inclusion criteria in a Chinese city between June and September 2022.A questionnaire was administered to collect general information about participants.Depression and anxiety were assessed using the patient health questionnaire-9 and generalized anxiety disorder-7 scale,respectively.A logistic regression analysis was performed to evaluate the relevant correlations.RESULTS Among 1580 first-generation only child parents,1120(70.89%)preferred family based care,324(20.51%)opted for community care,and 136(8.61%)chose institutional care,with 460(29.11%)reporting negative emotions.Significant differences in the distribution of negative emotions among only child parents were observed based on age,marital status,living conditions,disability,type of chronic disease,frailty status,and family support(P<0.05).The regression analysis indicated that disability,type of chronic disease,living environment,frailty status,and level of family support were independent risk factors for negative emotions among parents with only children(P<0.05).CONCLUSION Elderly care for parents of only children is primarily family-based.Independent risk factors for negative emotions in this group include disability,chronic disease type,and living environment.
基金supported by the Ministry of Research,Innovation and Digitalization,CNCS-UEFISCDI[Grant Nos.RO-NO-2019-0601(MEDYCONAI),PN-III-P4-PCE-2021-0444(RESONANO)]PN-IV-P1-PCE-2023-1137+2 种基金supported in part by IN2SIGHT,European Union’s Horizon 2020(GA.no.964481)by the Research Council of Lithuania(LMTLTAgreement No.P-MIP-23-237).
文摘Collagen characterization is crucial for disease diagnostics,prevention,and understanding,with growing focus on quantitative analysis at tissue and fibril levels.Numerous models have been developed to quantify structural changes in collagen linked to various pathologies.However,many approaches remain limited to conceptual descriptions or rely on custom software,often requiring programming skills,which re-stricts their clinical application and potential impact.We introduce CollagenFitJ,a plugin for the open-source software platform ImageJ/FIJI,which represents a widely used microscopy image analysis tool.CollagenFitJ makes use of the cylindrical symmetry model for collagen to enable facile quantitative assessment of polarization-resolved second harmonic generation microscopy image stacks.The plugin’s main outputs are collagen structure-related maps(e.g.,orientation and anisotropy of collagen fibrils within the focal volume),which can be accompanied by distribution and randomness maps for a series of structure-related parameters.We describe and validate the use of CollagenFitJ on images acquired on rat-tail tendons,collagen capsules surrounding human thyroid nodules,and mouse colon tumors,using both scanning and widefield second harmonic generation microscopy datasets.The plugin was designed to be user-friendly,requiring little to no experience in image processing and coding to facilitate access for life scientists,medical staff,and microscopy practitioners with limited coding skills or time availability required for coding.
文摘Objective:This study aims to assess nursing faculty’s perceptions and challenges in teaching Generation Z students,providing insights into the barriers and opportunities in bridging the generational learning gap.Material and Methods:A descriptive cross-sectional study was conducted among 335 nursing faculty members in the Delhi NCR region.Participants were recruited using a snowball sampling technique,and data were collected via a self-administered structured questionnaire.The questionnaire measured faculty perceptions and challenges using a Likert scale,with reliability assessed using Cronbach’s alpha.Data were analyzed through Descriptive and inferential statistics.Results:Findings revealed that while faculty recognize the need for technology integration and student-centered learning,they face challenges such as academic integrity concerns,psychological stress,and adapting to Gen Z’s expectations for personalized learning.The correlation between faculty perceptions and challenges was negligible(r=0.020,P=0.717),indicating that faculty perceptions remain stable despite these difficulties.Conclusion:Nursing faculty need to adapt pedagogical approaches to meet the evolving needs of Gen Z students.Bridging the gap between traditional teaching methods and the evolving needs of Generation Z requires faculty training,institutional support,and curriculum innovations.