Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of...Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.展开更多
With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and ...With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model.展开更多
Decarbonization of the power sector in China is an essential aspect of the energy transition process to achieve carbon neutrality.The power sector accounts for approximately 40%of China’s total CO_(2) emissions.Accor...Decarbonization of the power sector in China is an essential aspect of the energy transition process to achieve carbon neutrality.The power sector accounts for approximately 40%of China’s total CO_(2) emissions.Accordingly,collaborative optimization in power generation expansion planning(GEP)simultaneously considering economic,environmental,and technological concerns as carbon emissions is necessary.This paper proposes a collaborative mixedinteger linear programming optimization approach for GEP.This minimizes the power system’s operating cost to resolve emission concerns considering energy development strategies,flexible generation,and resource limitations constraints.This research further analyzes the advantages and disadvantages of current GEP techniques.Results show that the main determinants of new investment decisions are carbon emissions,reserve margins,resource availability,fuel consumption,and fuel price.The proposed optimization method is simulated and validated based on China’s power system data.Finally,this study provides policy recommendations on the flexible management of traditional power sources,the market-oriented mechanism of new energy sources,and the integration of new technology to support the attainment of carbon-neutral targets in the current energy transition process.展开更多
Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speed...Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speeds. The large eddy simulation (LES) equations and integral formulation of Ffowcs-Williams and Hawings (FW-H) are solved for the cavity with same conditions as experiments. The obtained density-field agrees well with Krishnamurty’s experimental schlieren photograph, which simulates flow-field distributions and the direction of sound wave radiation. The simulated self-sustained oscillation modes inside the cavity agree with Rossiter’s and Heller’s predicated results, which indicate frequency characteristics are obtained. Moreover, the results indicate that the feedback mechanism that new shedding-vortexes induced by propagation of sound wave created by the impingement of the shedding-vortexes in the shear-layer and rear cavity face leads to self-sustained oscillation and high noise inside the cavity. The peak acoustic pressure occurs in the first oscillation mode and the most of sound energy focuses on the low-frequency region.展开更多
Wind power has an increasing share of the Brazilian energy market and may represent 11.6% of total capacity by 2024. For large hydro-thermal systems having high-storage capacity, a complementarity between hydro and wi...Wind power has an increasing share of the Brazilian energy market and may represent 11.6% of total capacity by 2024. For large hydro-thermal systems having high-storage capacity, a complementarity between hydro and wind production could have important effects. The current optimization models are applied to dispatch power plants to meet the market demand and optimize the generation dispatches considering only hydroelectric and thermal power plants. The remaining sources, including wind power, small-hydroelectric plants and biomass plants, are excluded from the optimization model and are included deterministically. This work introduces a general methodology to represent the stochastic behavior of wind production aimed at the planning and operation of large interconnected power systems. In fact, considering the generation of the wind power source stochastically could show the complementarity between the hydro and wind power production, reducing the energy price in the spot market with the reduction of thermal power dispatches. In addition to that, with a reduction in wind power and a simultaneous dry-season occurrence, this model, is able to show the need of thermal power plants dispatches as well as the reduction of the risk of energy shortages.展开更多
Power system equipment outages are one of the most important factors affecting the reliability and economy of power systems.It is crucial to consider the reliability of the planning problems.In this paper,a generation...Power system equipment outages are one of the most important factors affecting the reliability and economy of power systems.It is crucial to consider the reliability of the planning problems.In this paper,a generation expansion planning(GEP)model is proposed,in which the candidate generating units and energy storage systems(ESSs)are simultaneously planned by minimizing the cost incurred on investment,operation,reserve,and reliability.The reliability cost is computed by multiplying the value of lost load(VOLL)with the expected energy not supplied(EENS),and this model makes a compromise between economy and reliability.Because the computation of EENS makes the major computation impediment of the entire model,a new efficient linear EENS formulation is proposed and applied in a multi-step GEP model.By doing so,the computation efficiency is significantly improved,and the solution accuracy is still desirable.The proposed GEP model is illustrated using the IEEE-RTS system to validate the effectiveness and superiority of the new model.展开更多
This paper presented a control design methodology for a proton exchange membrane fuel cell (PEMFC) generation system for residential applications. The dynamic behavior of the generation system is complex in such appli...This paper presented a control design methodology for a proton exchange membrane fuel cell (PEMFC) generation system for residential applications. The dynamic behavior of the generation system is complex in such applications. A comprehensive control design is very important for achieving a steady system operation and efficiency. The control strategy for a 60 kW generation system was proposed and tested based on the system dynamic model. A two-variable single neuron proportional-integral (PI) decoupling controller was developed for anode pressure and humidity by adjusting the hydrogen flow and water injection. A similar controller was developed for cathode pressure and humidity by adjusting the exhaust flow and water injection. The desired oxygen excess ratio was kept by a feedback controller based on the load current. An optimal seeking controller was used to trace the unique optimal power point. Two negative feedback controllers were used to provide AC power and a suitable voltage for residential loads by a power conditioning unit. Control simulation tests showed that 60 kW PEMFC generation system responded well for computer-simulated step changes in the load power demand. This control methodology for a 60 kW PEMFC generation system would be a competitive solution for system level designs such as parameter design, performance analysis, and online optimization.展开更多
Technology advancement and the global tendency to use renewable energy in distributed generation units in the distribution network have been proposed as sources of energy supply.Despite the complexity of their protect...Technology advancement and the global tendency to use renewable energy in distributed generation units in the distribution network have been proposed as sources of energy supply.Despite the complexity of their protection,as well as the operation of distributed generation resources in the distribution network,factors such as improving reliability,increasing production capacity of the distribution network,stabilizing the voltage of the distribution network,reducing peak clipping losses,as well as economic and environmental considerations,have expanded the influence of distributed generation(DG)resources in the distribution network.The location of DG sources and their capacity are the key factors in the effectiveness of distributed generation in the voltage stability of distribution systems.Nowadays,along with the scattered production sources of electric vehicles with the ability to connect to the network,due to having an energy storage system,they are known as valuable resources that can provide various services to the power system.These vehicles can empower the grid or be used as a storage supply source when parked and connected to the grid.This paper introduces and studies a two-stage planning framework for the concurrent management of many electric vehicles and distributed generation resources with private ownership.In the first stage,the aim is to increase the profit of electric vehicles and distributed generation sources;finally,the purpose is to reduce operating costs.The proposed scheduling framework is tested on a distribution network connected to bus 5 of the RBTS sample network.Besides distributed generation sources and electric vehicles,we integrate time-consistent load management into the system.Due to distributed generation sources such as photovoltaic systems and wind turbines and the studied design in the modeling,we use the Taguchi TOAT algorithm to generate and reduce the scenario to ensure the uncertainty in renewable energy.MATLAB software is used to solve the problem and select the optimal answer.展开更多
The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, o...The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, operation and management of the power grid. Currently there is a mountain of theoretical methods to calculate the line loss of the power system. However, these methods have some limitation, such as less considering the volatility of wind power resources. This paper presents an improved method to calculate the energy loss of wind power generation, considering the fluctuations of wind power generation. First, data are collected to obtain the curve of the typical daily expected output of wind farms for one month. Second, the curve of the typical daily expected output are corrected by the average electricity and the shape factor to obtain the curve of the typical daily equivalent output of wind farms for one month. Finally, the power flow is calculated by using typical daily equivalent output curve to describe the energy loss for one month. The results in the 110 kV main network show that the method is feasible.展开更多
Nowadays for power generation, environment is a major consideration. The heart of power generation is power station. At present there are almost above 40(Both Government & Rental) power station in Bangladesh. Amon...Nowadays for power generation, environment is a major consideration. The heart of power generation is power station. At present there are almost above 40(Both Government & Rental) power station in Bangladesh. Among these 80% of power station is gas based. Rest of the 20% is coal, liquid and furnace oil based. Bangladesh has only one Hydraulic power station. These gas and coal based power stations are giving adverse effect in Bangladesh. The main emissions from coal combustion at thermal power plants are carbon dioxide (CO), nitrogen oxides (NO), sulfur oxides (SO), chlorofluorocarbons (CFCs), and air- borne inorganic particles such as fly ash, soot, and other trace gas species. Carbon dioxide, methane, and chlorofluorocarbons are greenhouse gases. These emissions are considered to be responsible for heating up the atmosphere, producing a harmful global environment. It is known to all that hydro power station is a clean source of energy, but it has also some ecological and environmental effect. Dhaka is one of the top polluted city in the world. So for power generation if the environmental effect is not considered then Bangladesh will be in great trouble. The purpose of this paper is to discuss the present and future possible environmental effect of power generation in Bangladesh.展开更多
With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,...With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.展开更多
Combining with the characteristics of China's energy and the strategy of sustainable development, analyzing the pros and cons which caused by the appearance of DG and their operation connecting to grid, this paper...Combining with the characteristics of China's energy and the strategy of sustainable development, analyzing the pros and cons which caused by the appearance of DG and their operation connecting to grid, this paper points out that the two sides can achieve win-win under a reasonable combination between DG and distribution system, so as to optimize the allocation of resources, improve the utilization ratio of resource, and obtain maximum social benefit, harmoniously promote the development of power industry, economy and environment. As a word, this paper puts forward a new model of distribution network planning including DG and brings in penalty factorto guide the investment and construction of DG. Last of all, this paper presents the adoption of the coordination development coefficients which is to evaluate the power planning.展开更多
Rice(Oryza sativa L.)plays a pivotal role in global food security,yet its breeding is constrained by its long generation time and seasonality.To enhance rice breeding efficiency and meet future food demands,we have de...Rice(Oryza sativa L.)plays a pivotal role in global food security,yet its breeding is constrained by its long generation time and seasonality.To enhance rice breeding efficiency and meet future food demands,we have developed a vertical hydroponic breeding system integrated with light-emitting diodes(LEDs)light-ing in a closed plant factory(PF),which significantly accelerates rice growth and generation advance-ment.The results show that indica rice can be harvested as early as after 63 days of cultivation,a 50%reduction compared with field cultivation,enabling the annual harvesting of 5-6 generations within the PF.A hyperspectral imaging(HSI)system and attenuated total reflectance infrared(ATR-IR)spec-troscopy were further employed to characterize the chemical composition of the PF-and field-cultivated rice.Metabolomics analysis with ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)and gas chromatography-mass spectrometry(GC-MS)revealed that,com-pared with the field-cultivated rice,the PF-cultivated rice exhibited an up-regulation of total phenolic acids along with 68 non-volatile and 19 volatile metabolites,such as isovitexin,succinic acid,and methylillicinone F.Overall,this study reveals the unique metabolic profile of PF-cultivated rice and high-lights the potential of PFs to accelerate the breeding of crops such as rice,offering an innovative agricul-tural strategy to support food security in the face of global population growth and climate change.展开更多
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user...The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.展开更多
This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources an...This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.展开更多
Limited resources are available on the application of wind generation systems interconnected to weak powemetworks. With the need to further interface DG (distributed generation) including WG (wind generation) to w...Limited resources are available on the application of wind generation systems interconnected to weak powemetworks. With the need to further interface DG (distributed generation) including WG (wind generation) to weak networks, it is necessary to establish a means of determining what is the most efficient quantity of WG that can be applied in order to maintain stability in the network. This paper establishes a concept that can be applied to weak networks. The aim is to estimate how much WG can be installed on weak networks as well as establishing characteristic responses to generation loss without and with faulted conditions. The main contribution is a thorough understanding of weak network limitation proved to be the most critical parameter in these calculations.展开更多
The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature a...The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature and a high temperature of 1900 K∼60within a millimeter-sized sample volume in a Kawai-type LVP(KLVP)using hard tungsten carbide(WC)and newly designed assem-blies.The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe_(2)O_(3) pressure standard upon compression.The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils.Our study has enabled the routine gener-ation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs.This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs,but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures.展开更多
To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a b...To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.展开更多
The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex...The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.展开更多
The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation...The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation,focusing on their demonstrated potential to enhance production efficiency through automation and personalization.Despite these benefits,it is crucial to acknowledge the substantial initial computational investments required for training and deploying these models.We conduct an in-depth survey of cutting-edge generative AI technologies,encompassing models such as Stable Diffusion and GPT,and appraise pivotal large-scale datasets alongside quantifiable evaluation metrics.Review of the surveyed literature indicates the achievement of considerable maturity in the capacity of AI models to synthesize high-quality,aesthetically compelling anime visual images from textual prompts,alongside discernible progress in the generation of coherent narratives.However,achieving perfect long-form consistency,mitigating artifacts like flickering in video sequences,and enabling fine-grained artistic control remain critical ongoing challenges.Building upon these advancements,research efforts have increasingly pivoted towards the synthesis of higher-dimensional content,such as video and three-dimensional assets,with recent studies demonstrating significant progress in this burgeoning field.Nevertheless,formidable challenges endure amidst these advancements.Foremost among these are the substantial computational exigencies requisite for training and deploying these sophisticated models,particularly pronounced in the realm of high-dimensional generation such as video synthesis.Additional persistent hurdles include maintaining spatial-temporal consistency across complex scenes and mitigating ethical considerations surrounding bias and the preservation of human creative autonomy.This research underscores the transformative potential and inherent complexities of AI-driven synergy within the creative industries.We posit that future research should be dedicated to the synergistic fusion of diffusion and autoregressive models,the integration of multimodal inputs,and the balanced consideration of ethical implications,particularly regarding bias and the preservation of human creative autonomy,thereby establishing a robust foundation for the advancement of anime creation and the broader landscape of AI-driven content generation.展开更多
基金National Natural Science Foundation of China(No.519667013)Institution of Higher Learning Scientific Research Project of Gansu Province of China(No.2016B-032)。
文摘Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.
基金supported partly by the National Key R&D Program of China(2018YFA0702200)the Science and Technology Project of State Grid Shandong Electric Power Company(520604190002)。
文摘With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model.
基金supported by the Natural Science Foundation of Shandong Province (No.ZR2019MEE078)Education and Teaching Reform Research Project of Shandong University (“Development of an experiment platform to support the intelligent energy courses”)。
文摘Decarbonization of the power sector in China is an essential aspect of the energy transition process to achieve carbon neutrality.The power sector accounts for approximately 40%of China’s total CO_(2) emissions.Accordingly,collaborative optimization in power generation expansion planning(GEP)simultaneously considering economic,environmental,and technological concerns as carbon emissions is necessary.This paper proposes a collaborative mixedinteger linear programming optimization approach for GEP.This minimizes the power system’s operating cost to resolve emission concerns considering energy development strategies,flexible generation,and resource limitations constraints.This research further analyzes the advantages and disadvantages of current GEP techniques.Results show that the main determinants of new investment decisions are carbon emissions,reserve margins,resource availability,fuel consumption,and fuel price.The proposed optimization method is simulated and validated based on China’s power system data.Finally,this study provides policy recommendations on the flexible management of traditional power sources,the market-oriented mechanism of new energy sources,and the integration of new technology to support the attainment of carbon-neutral targets in the current energy transition process.
文摘Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speeds. The large eddy simulation (LES) equations and integral formulation of Ffowcs-Williams and Hawings (FW-H) are solved for the cavity with same conditions as experiments. The obtained density-field agrees well with Krishnamurty’s experimental schlieren photograph, which simulates flow-field distributions and the direction of sound wave radiation. The simulated self-sustained oscillation modes inside the cavity agree with Rossiter’s and Heller’s predicated results, which indicate frequency characteristics are obtained. Moreover, the results indicate that the feedback mechanism that new shedding-vortexes induced by propagation of sound wave created by the impingement of the shedding-vortexes in the shear-layer and rear cavity face leads to self-sustained oscillation and high noise inside the cavity. The peak acoustic pressure occurs in the first oscillation mode and the most of sound energy focuses on the low-frequency region.
文摘Wind power has an increasing share of the Brazilian energy market and may represent 11.6% of total capacity by 2024. For large hydro-thermal systems having high-storage capacity, a complementarity between hydro and wind production could have important effects. The current optimization models are applied to dispatch power plants to meet the market demand and optimize the generation dispatches considering only hydroelectric and thermal power plants. The remaining sources, including wind power, small-hydroelectric plants and biomass plants, are excluded from the optimization model and are included deterministically. This work introduces a general methodology to represent the stochastic behavior of wind production aimed at the planning and operation of large interconnected power systems. In fact, considering the generation of the wind power source stochastically could show the complementarity between the hydro and wind power production, reducing the energy price in the spot market with the reduction of thermal power dispatches. In addition to that, with a reduction in wind power and a simultaneous dry-season occurrence, this model, is able to show the need of thermal power plants dispatches as well as the reduction of the risk of energy shortages.
基金supported by project of State Grid Shandong Electric Power Company(52062520000Q)the National Key Research and Development Program of China(2019YFE0118400)。
文摘Power system equipment outages are one of the most important factors affecting the reliability and economy of power systems.It is crucial to consider the reliability of the planning problems.In this paper,a generation expansion planning(GEP)model is proposed,in which the candidate generating units and energy storage systems(ESSs)are simultaneously planned by minimizing the cost incurred on investment,operation,reserve,and reliability.The reliability cost is computed by multiplying the value of lost load(VOLL)with the expected energy not supplied(EENS),and this model makes a compromise between economy and reliability.Because the computation of EENS makes the major computation impediment of the entire model,a new efficient linear EENS formulation is proposed and applied in a multi-step GEP model.By doing so,the computation efficiency is significantly improved,and the solution accuracy is still desirable.The proposed GEP model is illustrated using the IEEE-RTS system to validate the effectiveness and superiority of the new model.
基金Project supported by the Hi-Tech R&D Program (863) of China (No. 2002AA517020)the National Nature Science Foundation of China (No. 60804031)+1 种基金the Natural Science Foundation of Shandong Province (No. ZR2012BQ016)the Science and Technology Plan of Shandong Province (No. 2013GHY11521), China
文摘This paper presented a control design methodology for a proton exchange membrane fuel cell (PEMFC) generation system for residential applications. The dynamic behavior of the generation system is complex in such applications. A comprehensive control design is very important for achieving a steady system operation and efficiency. The control strategy for a 60 kW generation system was proposed and tested based on the system dynamic model. A two-variable single neuron proportional-integral (PI) decoupling controller was developed for anode pressure and humidity by adjusting the hydrogen flow and water injection. A similar controller was developed for cathode pressure and humidity by adjusting the exhaust flow and water injection. The desired oxygen excess ratio was kept by a feedback controller based on the load current. An optimal seeking controller was used to trace the unique optimal power point. Two negative feedback controllers were used to provide AC power and a suitable voltage for residential loads by a power conditioning unit. Control simulation tests showed that 60 kW PEMFC generation system responded well for computer-simulated step changes in the load power demand. This control methodology for a 60 kW PEMFC generation system would be a competitive solution for system level designs such as parameter design, performance analysis, and online optimization.
文摘Technology advancement and the global tendency to use renewable energy in distributed generation units in the distribution network have been proposed as sources of energy supply.Despite the complexity of their protection,as well as the operation of distributed generation resources in the distribution network,factors such as improving reliability,increasing production capacity of the distribution network,stabilizing the voltage of the distribution network,reducing peak clipping losses,as well as economic and environmental considerations,have expanded the influence of distributed generation(DG)resources in the distribution network.The location of DG sources and their capacity are the key factors in the effectiveness of distributed generation in the voltage stability of distribution systems.Nowadays,along with the scattered production sources of electric vehicles with the ability to connect to the network,due to having an energy storage system,they are known as valuable resources that can provide various services to the power system.These vehicles can empower the grid or be used as a storage supply source when parked and connected to the grid.This paper introduces and studies a two-stage planning framework for the concurrent management of many electric vehicles and distributed generation resources with private ownership.In the first stage,the aim is to increase the profit of electric vehicles and distributed generation sources;finally,the purpose is to reduce operating costs.The proposed scheduling framework is tested on a distribution network connected to bus 5 of the RBTS sample network.Besides distributed generation sources and electric vehicles,we integrate time-consistent load management into the system.Due to distributed generation sources such as photovoltaic systems and wind turbines and the studied design in the modeling,we use the Taguchi TOAT algorithm to generate and reduce the scenario to ensure the uncertainty in renewable energy.MATLAB software is used to solve the problem and select the optimal answer.
文摘The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, operation and management of the power grid. Currently there is a mountain of theoretical methods to calculate the line loss of the power system. However, these methods have some limitation, such as less considering the volatility of wind power resources. This paper presents an improved method to calculate the energy loss of wind power generation, considering the fluctuations of wind power generation. First, data are collected to obtain the curve of the typical daily expected output of wind farms for one month. Second, the curve of the typical daily expected output are corrected by the average electricity and the shape factor to obtain the curve of the typical daily equivalent output of wind farms for one month. Finally, the power flow is calculated by using typical daily equivalent output curve to describe the energy loss for one month. The results in the 110 kV main network show that the method is feasible.
文摘Nowadays for power generation, environment is a major consideration. The heart of power generation is power station. At present there are almost above 40(Both Government & Rental) power station in Bangladesh. Among these 80% of power station is gas based. Rest of the 20% is coal, liquid and furnace oil based. Bangladesh has only one Hydraulic power station. These gas and coal based power stations are giving adverse effect in Bangladesh. The main emissions from coal combustion at thermal power plants are carbon dioxide (CO), nitrogen oxides (NO), sulfur oxides (SO), chlorofluorocarbons (CFCs), and air- borne inorganic particles such as fly ash, soot, and other trace gas species. Carbon dioxide, methane, and chlorofluorocarbons are greenhouse gases. These emissions are considered to be responsible for heating up the atmosphere, producing a harmful global environment. It is known to all that hydro power station is a clean source of energy, but it has also some ecological and environmental effect. Dhaka is one of the top polluted city in the world. So for power generation if the environmental effect is not considered then Bangladesh will be in great trouble. The purpose of this paper is to discuss the present and future possible environmental effect of power generation in Bangladesh.
基金supported by Science and Technology Project of State Grid Anhui Electric Power Co.,Ltd. (No.B6120922000A).
文摘With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.
文摘Combining with the characteristics of China's energy and the strategy of sustainable development, analyzing the pros and cons which caused by the appearance of DG and their operation connecting to grid, this paper points out that the two sides can achieve win-win under a reasonable combination between DG and distribution system, so as to optimize the allocation of resources, improve the utilization ratio of resource, and obtain maximum social benefit, harmoniously promote the development of power industry, economy and environment. As a word, this paper puts forward a new model of distribution network planning including DG and brings in penalty factorto guide the investment and construction of DG. Last of all, this paper presents the adoption of the coordination development coefficients which is to evaluate the power planning.
基金supported by the National Key Research and Development Program(2023YFF1001500)the Local Financial Funds of National Agricultural Science and Technology Center,Chengdu(NASC2022KR02,NASC2023TD08,NASC2021ST08,NASC2021PC04,NASC2022KR07,NASC2022KR06,and NASC2023ST04)+2 种基金the Agricultural Science and Technology Innova-tion Program(ASTIP-34-IUA-01,ASTIP-34-IUA-02,ASTIP-IUA-2023003,and ASTIP2024-34-IUA-09)the Central Public-interest Scientific Institution Basal Research Fund(Y2023YJ07 and SZ202403)the Sichuan Science and Technology Program(2023YFN003,2024NSFC1261,2023YFQ0100,and 2023ZYD0089).
文摘Rice(Oryza sativa L.)plays a pivotal role in global food security,yet its breeding is constrained by its long generation time and seasonality.To enhance rice breeding efficiency and meet future food demands,we have developed a vertical hydroponic breeding system integrated with light-emitting diodes(LEDs)light-ing in a closed plant factory(PF),which significantly accelerates rice growth and generation advance-ment.The results show that indica rice can be harvested as early as after 63 days of cultivation,a 50%reduction compared with field cultivation,enabling the annual harvesting of 5-6 generations within the PF.A hyperspectral imaging(HSI)system and attenuated total reflectance infrared(ATR-IR)spec-troscopy were further employed to characterize the chemical composition of the PF-and field-cultivated rice.Metabolomics analysis with ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)and gas chromatography-mass spectrometry(GC-MS)revealed that,com-pared with the field-cultivated rice,the PF-cultivated rice exhibited an up-regulation of total phenolic acids along with 68 non-volatile and 19 volatile metabolites,such as isovitexin,succinic acid,and methylillicinone F.Overall,this study reveals the unique metabolic profile of PF-cultivated rice and high-lights the potential of PFs to accelerate the breeding of crops such as rice,offering an innovative agricul-tural strategy to support food security in the face of global population growth and climate change.
基金funding from King Saud University through Researchers Supporting Project number(RSP2024R387),King Saud University,Riyadh,Saudi Arabia.
文摘The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.
文摘This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.
文摘Limited resources are available on the application of wind generation systems interconnected to weak powemetworks. With the need to further interface DG (distributed generation) including WG (wind generation) to weak networks, it is necessary to establish a means of determining what is the most efficient quantity of WG that can be applied in order to maintain stability in the network. This paper establishes a concept that can be applied to weak networks. The aim is to estimate how much WG can be installed on weak networks as well as establishing characteristic responses to generation loss without and with faulted conditions. The main contribution is a thorough understanding of weak network limitation proved to be the most critical parameter in these calculations.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(Grant Nos.42272041 and 52302043)+2 种基金the National Natural Science Foundation of China(Grant No.U23A20561)the Jilin University High-level Innovation Team Foundation(Grant No.2021TD–05)the Shanghai Synchrotron Radiation Facility(Grant Nos.2024-SSRF-PT-510031 and 505511).
文摘The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature and a high temperature of 1900 K∼60within a millimeter-sized sample volume in a Kawai-type LVP(KLVP)using hard tungsten carbide(WC)and newly designed assem-blies.The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe_(2)O_(3) pressure standard upon compression.The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils.Our study has enabled the routine gener-ation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs.This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs,but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures.
文摘To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.
基金supported by the National Nat-ural Science Foundation of China(Nos.12192251,12174185,92163216,and 62288101).
文摘The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.
基金supported by the National Natural Science Foundation of China(Grant No.62202210).
文摘The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation,focusing on their demonstrated potential to enhance production efficiency through automation and personalization.Despite these benefits,it is crucial to acknowledge the substantial initial computational investments required for training and deploying these models.We conduct an in-depth survey of cutting-edge generative AI technologies,encompassing models such as Stable Diffusion and GPT,and appraise pivotal large-scale datasets alongside quantifiable evaluation metrics.Review of the surveyed literature indicates the achievement of considerable maturity in the capacity of AI models to synthesize high-quality,aesthetically compelling anime visual images from textual prompts,alongside discernible progress in the generation of coherent narratives.However,achieving perfect long-form consistency,mitigating artifacts like flickering in video sequences,and enabling fine-grained artistic control remain critical ongoing challenges.Building upon these advancements,research efforts have increasingly pivoted towards the synthesis of higher-dimensional content,such as video and three-dimensional assets,with recent studies demonstrating significant progress in this burgeoning field.Nevertheless,formidable challenges endure amidst these advancements.Foremost among these are the substantial computational exigencies requisite for training and deploying these sophisticated models,particularly pronounced in the realm of high-dimensional generation such as video synthesis.Additional persistent hurdles include maintaining spatial-temporal consistency across complex scenes and mitigating ethical considerations surrounding bias and the preservation of human creative autonomy.This research underscores the transformative potential and inherent complexities of AI-driven synergy within the creative industries.We posit that future research should be dedicated to the synergistic fusion of diffusion and autoregressive models,the integration of multimodal inputs,and the balanced consideration of ethical implications,particularly regarding bias and the preservation of human creative autonomy,thereby establishing a robust foundation for the advancement of anime creation and the broader landscape of AI-driven content generation.