Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in o...Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder(CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions(M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections,effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure.The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.展开更多
AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:...AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.展开更多
AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,com...AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models.展开更多
The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ...The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.展开更多
Recent advances in contrastive language-image pretraining(CLIP)models and generative AI have demonstrated significant capabilities in cross-modal understanding and content generation.Based on these developments,this s...Recent advances in contrastive language-image pretraining(CLIP)models and generative AI have demonstrated significant capabilities in cross-modal understanding and content generation.Based on these developments,this study introduces a novel framework for airfoil design via natural language interfaces.To the authors’knowledge,this study establishes the first end-to-end,bidirectional mapping between textual descriptions(e.g.,“low-drag supercritical wing for transonic conditions”)and parametric airfoil geometries represented by class-shape transformation parameters.The proposed approach integrates a CLIP-inspired architecture that aligns text embeddings with airfoil parameter spaces through contrastive learning,along with a semantically conditioned decoder that produces physically plausible airfoil geometries from latent representations.The experimental results validate the framework’s ability to generate aerodynamically plausible airfoils from natural language specifications and to classify airfoils accurately based on given textual labels.This research reduces the expertise threshold for preliminary airfoil design and highlights the potential for human-AI collaboration in aerospace engineering.展开更多
Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasin...Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.展开更多
The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environmen...The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences.展开更多
The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bam...The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas.展开更多
With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi...With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory.展开更多
We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method...We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model.展开更多
Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a ...Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a semi-infinite rheologic medium. The results show that the spatio-temporal change of bulk-strain produced by the hard inclusion has three stages of different characteristics, which are similar to most of those geodetic deformation curves, but those by a soft inclusion do not. The α-stage is a long stage in which the precursors in both the near source region and the far field develop from the focal region to the periphery. The β-stage indicates a very rapid propagation of the precursors, so that they almost appear everywhere. During the γ-stage, the precursors in the far-field converge from the periphery, and the precursors in the near source region develop outwards. The theoretical results have been used to explain tentatively the stage characteristics of the spatio-temporal change of earthquake precursors.展开更多
In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood e...In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood estimation is considered. Three diagnostic statistics are used to detect whether the outliers exist in the data set. Simulation results show that when the sample size is small, the values of diagnostic statistics based on the maximum Lq-likelihood estimation are greater than the values based on the maximum likelihood estimation. As the sample size increases, the difference between the values of the diagnostic statistics based on two estimation methods diminishes gradually. It means that the outliers can be distinguished easier through the maximum Lq-likelihood method than those through the maximum likelihood estimation method.展开更多
Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learnin...Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learning.A Conditional Variational Auto Encoder(CVAE)and an integrated generative network CVAE-GAN that combines the CVAE with the Wasserstein Generative Adversarial Networks(WGAN),are conducted as generative models.They are used to generate target wall Mach distributions for the inverse design that matches specified features,such as locations of suction peak,shock and aft loading.Qualitative and quantitative results show that both adopted generative models can generate diverse and realistic wall Mach number distributions satisfying the given features.The CVAE-GAN model outperforms the CVAE model and achieves better reconstruction accuracies for all the samples in the dataset.Furthermore,a deep neural network for nonlinear mapping is adopted to obtain the airfoil shape corresponding to the target wall Mach number distribution.The performances of the designed deep neural network are fully demonstrated and a smoothness measurement is proposed to quantify small oscillations in the airfoil surface,proving the authenticity and accuracy of the generated airfoil shapes.展开更多
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for...For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.展开更多
Habitat suitability index(HSI)models have been widely used to analyze the relationship between species abundance and environmental factors,and ultimately inform management of marine species.The response of species abu...Habitat suitability index(HSI)models have been widely used to analyze the relationship between species abundance and environmental factors,and ultimately inform management of marine species.The response of species abundance to each environmental variable is different and habitat requirements may change over life history stages and seasons.Therefore,it is necessary to determine the optimal combination of environmental variables in HSI modelling.In this study,generalized additive models(GAMs)were used to determine which environmental variables to be included in the HSI models.Significant variables were retained and weighted in the HSI model according to their relative contribution(%)to the total deviation explained by the boosted regression tree(BRT).The HSI models were applied to evaluate the habitat suitability of mantis shrimp Oratosquilla oratoria in the Haizhou Bay and adjacent areas in 2011 and 2013–2017.Ontogenetic and seasonal variations in HSI models of mantis shrimp were also examined.Among the four models(non-optimized model,BRT informed HSI model,GAM informed HSI model,and both BRT and GAM informed HSI model),both BRT and GAM informed HSI model showed the best performance.Four environmental variables(bottom temperature,depth,distance offshore and sediment type)were selected in the HSI models for four groups(spring-juvenile,spring-adult,falljuvenile and fall-adult)of mantis shrimp.The distribution of habitat suitability showed similar patterns between juveniles and adults,but obvious seasonal variations were observed.This study suggests that the process of optimizing environmental variables in HSI models improves the performance of HSI models,and this optimization strategy could be extended to other marine organisms to enhance the understanding of the habitat suitability of target species.展开更多
In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independ...In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independent image different from the secret image.The generated image is then transmitted to the receiver and fed to the generative model database to generate another image visually the same as the secret image.Thus,we only need to transmit the meaning-normal image which is not related to the secret image,and we can achieve the same effect as the transmission of the secret image.This is the first time to propose the coverless image information steganographic scheme based on generative model,compared with the traditional image steganography.The transmitted image is not embedded with any information of the secret image in this method,therefore,can effectively resist steganalysis tools.Experimental results show that our scheme has high capacity,security and reliability.展开更多
In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surf...In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surface models, the generalized model takes into account the effect of complicated canopy morphology and inhomogeneous optical properties of leaves on radiation transfer within the canopy. In the model, the total leaf area index (LAI) of the canopy is divided into many layers. At a given layer, the influences of diffuse radiation angle distributions and leaf angle distributions on radiation transfer within the canopy are considered. The derivation of equations serving the model are described in detail, and these can deal with various diffuse radiation transfers in quite broad categories of canopy with quite inhomogeneons vertical structures and uneven leaves with substantially different optical properties of adaxial and abaxial faces of the leaves. The model is used to simulate the radiation transfer for canopies with horizontal leaves to validate the generalized model. Results from the model are compared with those from the two-stream scheme, and differences between these two models are discussed.展开更多
Physical mechanisms and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed. The equivalent connectivi...Physical mechanisms and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed. The equivalent connectivity index, relying on the meso-scale structure of porous material and the property of liquid, denotes the connectivity of pores in Representative Element Area (REA). If the conductivity of the porous material is anisotropic, the equivalent connectivity index is a second order tensor. Based on the basic theories of continuous mechanics and tensor analysis, relationship between area porosity and volumetric porosity of porous materials is deduced. Then a generalized expression, describing the relation between effective stress coefficient tensor and equivalent connectivity tensor of pores, is proposed, and the expression can be applied to isotropic media and also to anisotropic materials. Furthermore, evolution of porosity and equivalent connectivity index of the pore are studied in the strain space, and the method to determine the corresponding functions in expressions above is proposed using genetic algorithm and genetic programming. Two applications show that the results obtained by the method in this paper perfectly agree with the test data. This paper provides an important theoretical support to the coupled hydro-mechanical research.展开更多
This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vege...This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision.展开更多
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener...This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.展开更多
基金supported by the National Nature Science Foundation of China (Nos. 61671362 and 62071366)。
文摘Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder(CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions(M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections,effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure.The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(No.HR20C0026)the National Research Foundation of Korea(NRF)(No.RS-2023-00247504)the Patient-Centered Clinical Research Coordinating Center,funded by the Ministry of Health&Welfare,Republic of Korea(No.HC19C0276).
文摘AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.
基金supported by the Key Project of International Cooperation of Qilu University of Technology(Grant No.:QLUTGJHZ2018008)Shandong Provincial Natural Science Foundation Committee,China(Grant No.:ZR2016HB54)Shandong Provincial Key Laboratory of Microbial Engineering(SME).
文摘AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models.
文摘The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.U23A2069,12372288,12388101,and 92152301)Jilin Province Science and Technology Development Program,China(Grant No.20220301013GX)Aeronautical Science Foundation of China(Grant No.2020Z006058002)。
文摘Recent advances in contrastive language-image pretraining(CLIP)models and generative AI have demonstrated significant capabilities in cross-modal understanding and content generation.Based on these developments,this study introduces a novel framework for airfoil design via natural language interfaces.To the authors’knowledge,this study establishes the first end-to-end,bidirectional mapping between textual descriptions(e.g.,“low-drag supercritical wing for transonic conditions”)and parametric airfoil geometries represented by class-shape transformation parameters.The proposed approach integrates a CLIP-inspired architecture that aligns text embeddings with airfoil parameter spaces through contrastive learning,along with a semantically conditioned decoder that produces physically plausible airfoil geometries from latent representations.The experimental results validate the framework’s ability to generate aerodynamically plausible airfoils from natural language specifications and to classify airfoils accurately based on given textual labels.This research reduces the expertise threshold for preliminary airfoil design and highlights the potential for human-AI collaboration in aerospace engineering.
基金supported by Shanghai Science and Technology Commission Project(No.21DZ1201502)Shanghai Municipal Bureau of Ecology and Environment(Shanghai Environ-mental Science[2023]No.40)+1 种基金the Interdisciplinary Joint Research Project of Tongji University(No.2022-4-YB-12)Shanghai Science and Technology Commission Project(No.22DZ2200200).
文摘Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.
基金supported by the Fujian Provincial Science and Technology Program“University-Industry Cooperation Project”(2024Y4015)National Key R&D Plan of Strategic International Scientific and Technological Innovation Cooperation Project(2018YFE0207800).
文摘The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences.
基金supported by the Ministry of Agriculture,Forestry,and Fisheries of Japan (25093 C)JSPS KAKENHI (JP23H02262)
文摘The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas.
基金Project supported by the Guangdong Basic and Applied Basic Research Foundation of China(No.2023A1515012809)the Natural Science Foundation of Shaanxi Province of China(No.2023-JC-YB-073)the Fundamental Research Funds for the Central Universities of China(No.D5000230066)。
文摘With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory.
基金supported by the National Natural Science Foundation of China(Grant No.11974420).
文摘We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model.
文摘Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a semi-infinite rheologic medium. The results show that the spatio-temporal change of bulk-strain produced by the hard inclusion has three stages of different characteristics, which are similar to most of those geodetic deformation curves, but those by a soft inclusion do not. The α-stage is a long stage in which the precursors in both the near source region and the far field develop from the focal region to the periphery. The β-stage indicates a very rapid propagation of the precursors, so that they almost appear everywhere. During the γ-stage, the precursors in the far-field converge from the periphery, and the precursors in the near source region develop outwards. The theoretical results have been used to explain tentatively the stage characteristics of the spatio-temporal change of earthquake precursors.
基金The National Natural Science Foundation of China(No.11171065)the Natural Science Foundation of Jiangsu Province(No.BK2011058)
文摘In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood estimation is considered. Three diagnostic statistics are used to detect whether the outliers exist in the data set. Simulation results show that when the sample size is small, the values of diagnostic statistics based on the maximum Lq-likelihood estimation are greater than the values based on the maximum likelihood estimation. As the sample size increases, the difference between the values of the diagnostic statistics based on two estimation methods diminishes gradually. It means that the outliers can be distinguished easier through the maximum Lq-likelihood method than those through the maximum likelihood estimation method.
基金co-supported by the National Key Project of China(No.GJXM92579)the National Natural Science Foundation of China(Nos.92052203,61903178 and61906081)。
文摘Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learning.A Conditional Variational Auto Encoder(CVAE)and an integrated generative network CVAE-GAN that combines the CVAE with the Wasserstein Generative Adversarial Networks(WGAN),are conducted as generative models.They are used to generate target wall Mach distributions for the inverse design that matches specified features,such as locations of suction peak,shock and aft loading.Qualitative and quantitative results show that both adopted generative models can generate diverse and realistic wall Mach number distributions satisfying the given features.The CVAE-GAN model outperforms the CVAE model and achieves better reconstruction accuracies for all the samples in the dataset.Furthermore,a deep neural network for nonlinear mapping is adopted to obtain the airfoil shape corresponding to the target wall Mach number distribution.The performances of the designed deep neural network are fully demonstrated and a smoothness measurement is proposed to quantify small oscillations in the airfoil surface,proving the authenticity and accuracy of the generated airfoil shapes.
基金supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335the Shandong Provincial Natural Science Foundation under Grant JQ201808+5 种基金The Fundamental Research Funds for the Central Universities under Grant 18CX02097Athe Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006111 Project under Grant B08028Sinopec Science and Technology Project under Grant P20050-1
文摘For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.
基金The National Key R&D Program of China under contract No.2017YFE0104400the National Natural Science Foundation of China under contract No.31772852the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2018SDKJ0501-2。
文摘Habitat suitability index(HSI)models have been widely used to analyze the relationship between species abundance and environmental factors,and ultimately inform management of marine species.The response of species abundance to each environmental variable is different and habitat requirements may change over life history stages and seasons.Therefore,it is necessary to determine the optimal combination of environmental variables in HSI modelling.In this study,generalized additive models(GAMs)were used to determine which environmental variables to be included in the HSI models.Significant variables were retained and weighted in the HSI model according to their relative contribution(%)to the total deviation explained by the boosted regression tree(BRT).The HSI models were applied to evaluate the habitat suitability of mantis shrimp Oratosquilla oratoria in the Haizhou Bay and adjacent areas in 2011 and 2013–2017.Ontogenetic and seasonal variations in HSI models of mantis shrimp were also examined.Among the four models(non-optimized model,BRT informed HSI model,GAM informed HSI model,and both BRT and GAM informed HSI model),both BRT and GAM informed HSI model showed the best performance.Four environmental variables(bottom temperature,depth,distance offshore and sediment type)were selected in the HSI models for four groups(spring-juvenile,spring-adult,falljuvenile and fall-adult)of mantis shrimp.The distribution of habitat suitability showed similar patterns between juveniles and adults,but obvious seasonal variations were observed.This study suggests that the process of optimizing environmental variables in HSI models improves the performance of HSI models,and this optimization strategy could be extended to other marine organisms to enhance the understanding of the habitat suitability of target species.
基金This paper was supported by the National Natural Science Foundation of China(No.U1204606)the Key Programs for Science and Technology Development of Henan Province(No.172102210335)Key Scientific Research Projects in Henan Universities(No.16A520058).
文摘In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independent image different from the secret image.The generated image is then transmitted to the receiver and fed to the generative model database to generate another image visually the same as the secret image.Thus,we only need to transmit the meaning-normal image which is not related to the secret image,and we can achieve the same effect as the transmission of the secret image.This is the first time to propose the coverless image information steganographic scheme based on generative model,compared with the traditional image steganography.The transmitted image is not embedded with any information of the secret image in this method,therefore,can effectively resist steganalysis tools.Experimental results show that our scheme has high capacity,security and reliability.
文摘In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surface models, the generalized model takes into account the effect of complicated canopy morphology and inhomogeneous optical properties of leaves on radiation transfer within the canopy. In the model, the total leaf area index (LAI) of the canopy is divided into many layers. At a given layer, the influences of diffuse radiation angle distributions and leaf angle distributions on radiation transfer within the canopy are considered. The derivation of equations serving the model are described in detail, and these can deal with various diffuse radiation transfers in quite broad categories of canopy with quite inhomogeneons vertical structures and uneven leaves with substantially different optical properties of adaxial and abaxial faces of the leaves. The model is used to simulate the radiation transfer for canopies with horizontal leaves to validate the generalized model. Results from the model are compared with those from the two-stream scheme, and differences between these two models are discussed.
基金supported by the Yalongjiang River Joint Fund by the National Natural Science Foundation of China(NSFC)Ertan Hydropower Development Company,LTD(Nos.50579091 and 50539090)+1 种基金NSFC(No.10772190)Major State Basic Research Project of China(No.2002CB412708)
文摘Physical mechanisms and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed. The equivalent connectivity index, relying on the meso-scale structure of porous material and the property of liquid, denotes the connectivity of pores in Representative Element Area (REA). If the conductivity of the porous material is anisotropic, the equivalent connectivity index is a second order tensor. Based on the basic theories of continuous mechanics and tensor analysis, relationship between area porosity and volumetric porosity of porous materials is deduced. Then a generalized expression, describing the relation between effective stress coefficient tensor and equivalent connectivity tensor of pores, is proposed, and the expression can be applied to isotropic media and also to anisotropic materials. Furthermore, evolution of porosity and equivalent connectivity index of the pore are studied in the strain space, and the method to determine the corresponding functions in expressions above is proposed using genetic algorithm and genetic programming. Two applications show that the results obtained by the method in this paper perfectly agree with the test data. This paper provides an important theoretical support to the coupled hydro-mechanical research.
基金Under the auspices of National Natural Science Foundation of China(No.41001363)
文摘This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision.
基金Project(51774219)supported by the National Natural Science Foundation of China
文摘This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.