In this paper, a new generating method-opposite-direction accumulated generating operation is presented. The effectiveness of the method for different original sequences to choose different generating operation is dis...In this paper, a new generating method-opposite-direction accumulated generating operation is presented. The effectiveness of the method for different original sequences to choose different generating operation is discussed and the optimal parameters ɑ and b of grey model by a new structure of background and initial value are obtained. Some properties of a grey model are studied. The calculating precision of the example shows that the method is very effective.展开更多
In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The ...In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The tooth profile is designed by generating cutting theory, the pure rolling mathematic model that the center line of unsymmetrical rack roll along non-circular pitch curve is built, the digital model of non-circular gear with double generating angles is created through the second development method of CAD software, and then the drive characteristic and tooth strength are analyzed. The results show that the design method for double generating angles non-circular gear proposed in this paper is feasible, which is significant to improve the bearing capacity of non-circular gear pair.展开更多
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs us...As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.展开更多
In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functio...In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functions. Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality, we prove that the sequence generated by the GADMM converges to a critical point of the augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large. Moreover, we also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.展开更多
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equat...In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.展开更多
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th...A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.展开更多
A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. T...A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. To avoid numerical oscillations caused by the dispersion term in the KdV equation, two numerical techniques were introduced to improve the numerical stability. The Legendre, Chebyshev and Hermite polynomials were used as the basis functions. The proposed numerical scheme is validated by applications to the Burgers equation (nonlinear convection- diffusion problem) and KdV equation(single solitary and 2-solitary wave problems), where analytical solutions are available for comparison. Numerical results agree very well with the corresponding analytical solutions in all cases.展开更多
The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditi...The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton's concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points ly- ing on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical tech- nique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved.展开更多
Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatia...Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.展开更多
Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generali...Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sampler the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations.展开更多
The crystallite orientation distribution functions(ODFs)were determined for the surface, 1/4 depth and 1/2 depth layers of a cold-rolled W20 non-oriented silicon steel sheet.By extending the theory of magnetic anisotr...The crystallite orientation distribution functions(ODFs)were determined for the surface, 1/4 depth and 1/2 depth layers of a cold-rolled W20 non-oriented silicon steel sheet.By extending the theory of magnetic anisotropy to textured materials with no sample symmetry, the variation of magnetic torque versus directions in the plane of the sheet was further calcu- lated quantitatively,which fits well with the measured torque curve.展开更多
A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equati...A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.展开更多
Owing to the fact that the conventional deterministic back analysis of the permeability coefficient cannot reflect the uncertainties of parameters, including the hydraulic head at the boundary, the permeability coeffi...Owing to the fact that the conventional deterministic back analysis of the permeability coefficient cannot reflect the uncertainties of parameters, including the hydraulic head at the boundary, the permeability coefficient and measured hydraulic head, a stochastic back analysis taking consideration of uncertainties of parameters was performed using the generalized Bayesian method. Based on the stochastic finite element method (SFEM) for a seepage field, the variable metric algorithm and the generalized Bayesian method, formulas for stochastic back analysis of the permeability coefficient were derived. A case study of seepage analysis of a sluice foundation was performed to illustrate the proposed method. The results indicate that, with the generalized Bayesian method that considers the uncertainties of measured hydraulic head, the permeability coefficient and the hydraulic head at the boundary, both the mean and standard deviation of the permeability coefficient can be obtained and the standard deviation is less than that obtained by the conventional Bayesian method. Therefore, the present method is valid and applicable.展开更多
In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve ...In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.展开更多
This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit m...This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit material point method(iMPM).The global stiffness matrix is formed explicitly and the Newton-Raphson iterative method is used to solve the equilibrium equations.Where possible,the implementation procedure closely follows standard finite element method(FEM)approaches to allow easy conversion of other FEM codes.The generalized interpolation function is assigned to eliminate the inherent cell crossing noise within conventional MPM.For the first time,the B-bar approach is used to overcome volumetric locking in standard GIMP method for near-incompressible non-linear geomechanics.The proposed i GIMP was tested and compared with i MPM and analytical solutions via a 1 D column compression problem.Results highlighted the superiority of the i GIMP approach in reducing stress oscillations,thereby improving computational accuracy.Then,elasto-plastic slope stabilities and rigid footing problems were considered,further illustrating the ability of the proposed method to overcome volumetric locking due to incompressibility.Results showed that the proposed i GIMP with B-bar approach can be used to simulate geotechnical problems with large deformations.展开更多
In this paper, the MHD peristaltic flow inside wavy walls of an asymmetric channel is investigated, where the walls of the channel are moving with peristaltic wave velocity along the channel length. During this invest...In this paper, the MHD peristaltic flow inside wavy walls of an asymmetric channel is investigated, where the walls of the channel are moving with peristaltic wave velocity along the channel length. During this investigation,the electrical conductivity both in Lorentz force and Joule heating is taken to be temperature dependent. Also, the long wavelength and low Reynolds number assumptions are utilized to reduce the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. The new set of obtained equations is then numerically solved using the generalized differential quadrature method(GDQM). This is the first attempt to solve the nonlinear equations arising in the peristaltic flows using this method in combination with the Newton-Raphson technique. Moreover, in order to check the accuracy of the proposed numerical method, our results are compared with the results of built-in Mathematica command NDSolve. Taking Joule heating and viscous dissipation into account, the effects of various parameters appearing in the problem are used to discuss the fluid flow characteristics and heat transfer in the electrically conducting fluids graphically. In presence of variable electrical conductivity, velocity and temperature profiles are highly decreasing in nature when the intensity of the electrical conductivity parameter is strengthened.展开更多
Lagrangian-Eulerian formulations based on a generalized variational principle of fluid-solid coupling dynamics are established to describe flow-induced vibration of a structure under small deformation in an incompress...Lagrangian-Eulerian formulations based on a generalized variational principle of fluid-solid coupling dynamics are established to describe flow-induced vibration of a structure under small deformation in an incompressible viscous fluid flow. The spatial discretization of the formulations is based on the multi-linear interpolating functions by using the finite element method for both the fluid and solid structures. The generalized trapezoidal rule is used to obtain apparently non-symmetric linear equations in an incremental form for the variables of the flow and vibration. The nonlinear convective term and time factors are contained in the non-symmetric coefficient matrix of the equations. The generalized minimum residual (GMRES) method is used to solve the incremental equations. A new stable algorithm of GMRES-Hughes-Newmark is developed to deal with the flow-induced vibration with dynamical fluid-structure interaction in complex geometries. Good agreement between the simulations and laboratory measurements of the pressure and blade vibration accelerations in a hydro turbine passage was obtained, indicating that the GiViRES-Hughes-Newmark algorithm presented in this paper is suitable for dealing with the flow-induced vibration of structures under small deformation.展开更多
In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution eq...In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
文摘In this paper, a new generating method-opposite-direction accumulated generating operation is presented. The effectiveness of the method for different original sequences to choose different generating operation is discussed and the optimal parameters ɑ and b of grey model by a new structure of background and initial value are obtained. Some properties of a grey model are studied. The calculating precision of the example shows that the method is very effective.
基金Supported by National Natural Science Foundation of China(No.51275147)
文摘In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The tooth profile is designed by generating cutting theory, the pure rolling mathematic model that the center line of unsymmetrical rack roll along non-circular pitch curve is built, the digital model of non-circular gear with double generating angles is created through the second development method of CAD software, and then the drive characteristic and tooth strength are analyzed. The results show that the design method for double generating angles non-circular gear proposed in this paper is feasible, which is significant to improve the bearing capacity of non-circular gear pair.
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
基金supported by Science and Technology Major Project of Shanxi Province,China(No.20201101002)Science and Technology Major Project of China,China(No.2016ZX05043002)+1 种基金National Natural Science Foundation Project of China,China(No.51874319)Science Foundation of China University of Petroleum(Beijing),China(No.2462020QNXZ003)to support part of this work
文摘As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1157117811801455)the Fundamental Research Funds of China West Normal University(Grant No.17E084)
文摘In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functions. Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality, we prove that the sequence generated by the GADMM converges to a critical point of the augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large. Moreover, we also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.
基金The NSF(11001042) of ChinaSRFDP(20100043120001)FRFCU(09QNJJ002)
文摘In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.
文摘A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
基金Project supported by the National Natural Science Foundation of China (No.10272118) the Hong Kong Polytechnic University Research Grant (No.A-PE28) the Research Fund for the Doctoral Program of Ministry of Education of China (No.20020558013)
文摘A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. To avoid numerical oscillations caused by the dispersion term in the KdV equation, two numerical techniques were introduced to improve the numerical stability. The Legendre, Chebyshev and Hermite polynomials were used as the basis functions. The proposed numerical scheme is validated by applications to the Burgers equation (nonlinear convection- diffusion problem) and KdV equation(single solitary and 2-solitary wave problems), where analytical solutions are available for comparison. Numerical results agree very well with the corresponding analytical solutions in all cases.
文摘The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton's concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points ly- ing on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical tech- nique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved.
文摘Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.
基金The project supported partially by the State Key Basic Research Program of China under Grant No. 2004 CB 318000The authors would like to thank the referee for his/her valuable suggestions.
文摘Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sampler the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations.
文摘The crystallite orientation distribution functions(ODFs)were determined for the surface, 1/4 depth and 1/2 depth layers of a cold-rolled W20 non-oriented silicon steel sheet.By extending the theory of magnetic anisotropy to textured materials with no sample symmetry, the variation of magnetic torque versus directions in the plane of the sheet was further calcu- lated quantitatively,which fits well with the measured torque curve.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.
基金supported by the National Natural Science Foundation of China (Grant No. 50579090)the National Basic Research Program of China (973 Program, Grant No. 2007CB714102)National Science and Technology Support Program of China (Program for the Eleventh Five-Year Plan, Grant No. 2006BAB04A06)
文摘Owing to the fact that the conventional deterministic back analysis of the permeability coefficient cannot reflect the uncertainties of parameters, including the hydraulic head at the boundary, the permeability coefficient and measured hydraulic head, a stochastic back analysis taking consideration of uncertainties of parameters was performed using the generalized Bayesian method. Based on the stochastic finite element method (SFEM) for a seepage field, the variable metric algorithm and the generalized Bayesian method, formulas for stochastic back analysis of the permeability coefficient were derived. A case study of seepage analysis of a sluice foundation was performed to illustrate the proposed method. The results indicate that, with the generalized Bayesian method that considers the uncertainties of measured hydraulic head, the permeability coefficient and the hydraulic head at the boundary, both the mean and standard deviation of the permeability coefficient can be obtained and the standard deviation is less than that obtained by the conventional Bayesian method. Therefore, the present method is valid and applicable.
基金supported in part by NSF of China N.10871131The Science and Technology Commission of Shanghai Municipality,Grant N.075105118+1 种基金Shanghai Leading Academic Discipline Project N.T0401Fund for E-institute of Shanghai Universities N.E03004.
文摘In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.
基金the National Natural Science Foundation of China(Nos.41807223 and 51908175)the Fundamental Research Funds for the Central Universities(No.B210202096)+1 种基金the Natural Science Foundation of Guangdong Province(No.2018A030310346)the Water Conservancy Science and Technology Innovation Project of Guangdong Province(No.2020-11),China。
文摘This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit material point method(iMPM).The global stiffness matrix is formed explicitly and the Newton-Raphson iterative method is used to solve the equilibrium equations.Where possible,the implementation procedure closely follows standard finite element method(FEM)approaches to allow easy conversion of other FEM codes.The generalized interpolation function is assigned to eliminate the inherent cell crossing noise within conventional MPM.For the first time,the B-bar approach is used to overcome volumetric locking in standard GIMP method for near-incompressible non-linear geomechanics.The proposed i GIMP was tested and compared with i MPM and analytical solutions via a 1 D column compression problem.Results highlighted the superiority of the i GIMP approach in reducing stress oscillations,thereby improving computational accuracy.Then,elasto-plastic slope stabilities and rigid footing problems were considered,further illustrating the ability of the proposed method to overcome volumetric locking due to incompressibility.Results showed that the proposed i GIMP with B-bar approach can be used to simulate geotechnical problems with large deformations.
文摘In this paper, the MHD peristaltic flow inside wavy walls of an asymmetric channel is investigated, where the walls of the channel are moving with peristaltic wave velocity along the channel length. During this investigation,the electrical conductivity both in Lorentz force and Joule heating is taken to be temperature dependent. Also, the long wavelength and low Reynolds number assumptions are utilized to reduce the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. The new set of obtained equations is then numerically solved using the generalized differential quadrature method(GDQM). This is the first attempt to solve the nonlinear equations arising in the peristaltic flows using this method in combination with the Newton-Raphson technique. Moreover, in order to check the accuracy of the proposed numerical method, our results are compared with the results of built-in Mathematica command NDSolve. Taking Joule heating and viscous dissipation into account, the effects of various parameters appearing in the problem are used to discuss the fluid flow characteristics and heat transfer in the electrically conducting fluids graphically. In presence of variable electrical conductivity, velocity and temperature profiles are highly decreasing in nature when the intensity of the electrical conductivity parameter is strengthened.
基金supported by the National Natural Science Foundation of China (No. 50839003)the Natural Science Foundation of Yunnan Province (No. 2008GA027)
文摘Lagrangian-Eulerian formulations based on a generalized variational principle of fluid-solid coupling dynamics are established to describe flow-induced vibration of a structure under small deformation in an incompressible viscous fluid flow. The spatial discretization of the formulations is based on the multi-linear interpolating functions by using the finite element method for both the fluid and solid structures. The generalized trapezoidal rule is used to obtain apparently non-symmetric linear equations in an incremental form for the variables of the flow and vibration. The nonlinear convective term and time factors are contained in the non-symmetric coefficient matrix of the equations. The generalized minimum residual (GMRES) method is used to solve the incremental equations. A new stable algorithm of GMRES-Hughes-Newmark is developed to deal with the flow-induced vibration with dynamical fluid-structure interaction in complex geometries. Good agreement between the simulations and laboratory measurements of the pressure and blade vibration accelerations in a hydro turbine passage was obtained, indicating that the GiViRES-Hughes-Newmark algorithm presented in this paper is suitable for dealing with the flow-induced vibration of structures under small deformation.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.