In this paper the generalized Bianchi's identities for the variant constrained system (GBIVOS)w ith non-invariant action integral and constraint conditions was derived, and the strong and weak conservation laws fo...In this paper the generalized Bianchi's identities for the variant constrained system (GBIVOS)w ith non-invariant action integral and constraint conditions was derived, and the strong and weak conservation laws for such system was deduced. The preliminary applications of the GBIVCS to the case for some models of field theories was given. The Dirac constraint of such system was discussed.展开更多
Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable coup...Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable couplings of a fractional soliton hierarchy are derived from a fractional zero-curvature equation. Finally, we obtain the fractional Hamiltonian structures of the fractional integrable couplings of the soliton hierarchy.展开更多
Let R be a 2-torsion free prime ring and L a noncommutative Lie ideal of R. Suppose that (d,σ) is a skew derivation of R such that xsd(x)xt = 0 for all x ∈ L, where s, t are fixed non-negative integers. Then d = 0.
Let R be a prime ring of characteristic different from 2, d and 9 two derivations of R at least one of which is nonzero, L a non-central Lie ideal of R, and a ∈ R. We prove that if a(d(u)u - ug(u)) = 0 for any...Let R be a prime ring of characteristic different from 2, d and 9 two derivations of R at least one of which is nonzero, L a non-central Lie ideal of R, and a ∈ R. We prove that if a(d(u)u - ug(u)) = 0 for any u ∈ L, then either a = O, or R is an sa-ring, d(x) = [p, x], and g(x) = -d(x) for some p in the Martindale quotient ring of R.展开更多
Let R be a semiprime ring with characteristic p≥0 and RF be its left Martindale quotient ring. If ф(Xi^△j) is a reduced generalized differential identity for an essential ideal of R, then ф(Zije(△j )) is a ...Let R be a semiprime ring with characteristic p≥0 and RF be its left Martindale quotient ring. If ф(Xi^△j) is a reduced generalized differential identity for an essential ideal of R, then ф(Zije(△j )) is a generalized polynomial identity for RF, where e(△j) are idempotents in the extended centroid of R determined by △j. Let R be a prime ring and Q be its symmetric Martindale quotient ring. If ф(Xi△j) is a reduced generalized differential identity for a noncommutative Lie ideal of R, then ф(Zij) is a generalized polynomial identity for [R, R]. Moreover, if ф(Xi△j) is a reduced generalized differential identity, with coefficients in Q, for a large right ideal of R, then ф(Zij) is a generalized polynomial identity for Q.展开更多
Let R be a prime ring of characteristic not 2, A be an additive subgroup of R, and F, T, D, K: A →R be additive maps such that F([x, y]) = F(x)y - yg(x) - T(y)x + xD(y) for all x, y ∈ A. Our aim is to de...Let R be a prime ring of characteristic not 2, A be an additive subgroup of R, and F, T, D, K: A →R be additive maps such that F([x, y]) = F(x)y - yg(x) - T(y)x + xD(y) for all x, y ∈ A. Our aim is to deal with this functional identity when A is R itself or a noncentral Lie ideal of R. Eventually, we are able to describe the forms of the mappings F, T, D, and K in case A = R with deg(R) 〉 3 and also in the case A is a noncentral Lie ideal and deg(R) 〉 9. These enable us in return to characterize the forms of both generalized Lie derivations, D-Lie derivations and Lie centralizers of R under some mild assumptions. Finally, we give a generalization of Lie homomorphisms on Lie ideals.展开更多
基金This work was supported by Beijing Science Foundation of the People's Republie of China.
文摘In this paper the generalized Bianchi's identities for the variant constrained system (GBIVOS)w ith non-invariant action integral and constraint conditions was derived, and the strong and weak conservation laws for such system was deduced. The preliminary applications of the GBIVCS to the case for some models of field theories was given. The Dirac constraint of such system was discussed.
基金supported by the National Natural Science Foundation of China(1127100861072147+1 种基金11071159)the First-Class Discipline of Universities in Shanghai and the Shanghai University Leading Academic Discipline Project(A13-0101-12-004)
文摘Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable couplings of a fractional soliton hierarchy are derived from a fractional zero-curvature equation. Finally, we obtain the fractional Hamiltonian structures of the fractional integrable couplings of the soliton hierarchy.
基金The NSF(1408085QA08)of Anhui Provincialthe Key University Science Research Project(KJ2014A183)of Anhui Province of Chinathe Training Program(2014PY06)of Chuzhou University of China
文摘Let R be a 2-torsion free prime ring and L a noncommutative Lie ideal of R. Suppose that (d,σ) is a skew derivation of R such that xsd(x)xt = 0 for all x ∈ L, where s, t are fixed non-negative integers. Then d = 0.
文摘Let R be a prime ring of characteristic different from 2, d and 9 two derivations of R at least one of which is nonzero, L a non-central Lie ideal of R, and a ∈ R. We prove that if a(d(u)u - ug(u)) = 0 for any u ∈ L, then either a = O, or R is an sa-ring, d(x) = [p, x], and g(x) = -d(x) for some p in the Martindale quotient ring of R.
基金supported by the mathematical Tianyuan Research Foundation of China(10426005)the Basic Research Foundation of Beijing Institute of Technology of China
文摘Let R be a semiprime ring with characteristic p≥0 and RF be its left Martindale quotient ring. If ф(Xi^△j) is a reduced generalized differential identity for an essential ideal of R, then ф(Zije(△j )) is a generalized polynomial identity for RF, where e(△j) are idempotents in the extended centroid of R determined by △j. Let R be a prime ring and Q be its symmetric Martindale quotient ring. If ф(Xi△j) is a reduced generalized differential identity for a noncommutative Lie ideal of R, then ф(Zij) is a generalized polynomial identity for [R, R]. Moreover, if ф(Xi△j) is a reduced generalized differential identity, with coefficients in Q, for a large right ideal of R, then ф(Zij) is a generalized polynomial identity for Q.
文摘Let R be a prime ring of characteristic not 2, A be an additive subgroup of R, and F, T, D, K: A →R be additive maps such that F([x, y]) = F(x)y - yg(x) - T(y)x + xD(y) for all x, y ∈ A. Our aim is to deal with this functional identity when A is R itself or a noncentral Lie ideal of R. Eventually, we are able to describe the forms of the mappings F, T, D, and K in case A = R with deg(R) 〉 3 and also in the case A is a noncentral Lie ideal and deg(R) 〉 9. These enable us in return to characterize the forms of both generalized Lie derivations, D-Lie derivations and Lie centralizers of R under some mild assumptions. Finally, we give a generalization of Lie homomorphisms on Lie ideals.